English

Find the Area Included Between the Parabolas Y2 = 4ax and X2 = 4by. - Mathematics

Advertisements
Advertisements

Question

Find the area included between the parabolas y2 = 4ax and x2 = 4by.

Solution


To find the point of intersection of the parabolas substitute \[y = \frac{x^2}{4b}\] in \[y^2 = 4ax\]  we get 
\[\frac{x^4}{16 b^2} = 4ax\]
\[ \Rightarrow x^4 - 64a b^2 x = 0\]
\[ \Rightarrow x\left( x^3 - 64a b^2 \right) = 0\]
\[ \Rightarrow x = 0\text{ and }x = 4\sqrt[3]{a b^2}\]
\[ \Rightarrow y = 0\text{ and }y = 4\sqrt[3]{a^2 b}\]
Therefore, the required area ABCD = \[\int_0^{4\sqrt[3]{a b^2}} \left( y_1 - y_2 \right) d x\] where  \[y_1 = 2\sqrt{ax}\] and  \[y_2 = \frac{x^2}{4b}\] 
Required area = \[\int_0^{4\sqrt[3]{a b^2}} \left( y_1 - y_2 \right) d x\]
\[ = \int_0^{4\sqrt[3]{a b^2}} \left( 2\sqrt{ax} - \frac{x^2}{4b} \right) d x\]
\[ = \left[ \frac{4\sqrt{a}}{3} x^\frac{3}{2} - \frac{x^3}{12b} \right]_0^{4\sqrt[3]{a b^2}} \]
\[ = \left[ \frac{4\sqrt{a}}{3} \left( 4\sqrt[3]{a b^2} \right)^\frac{3}{2} - \frac{\left( 4\sqrt[3]{a b^2} \right)^3}{12b} \right] - \left[ \frac{4\sqrt{a}}{3} \left( 0 \right)^\frac{3}{2} - \frac{\left( 0 \right)^3}{12a} \right]\]
\[ = \frac{16ab}{3}\text{ square units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.3 [Page 51]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.3 | Q 16 | Page 51

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).


Find the area of the region lying between the parabolas y2 = 4ax and x2 = 4ay.


Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y


Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y 2 = 1


Find the area of the region bounded by the curves y = x+ 2, xx = 0 and x = 3


Using integration finds the area of the region bounded by the triangle whose vertices are (–1, 0), (1, 3) and (3, 2).


Using the method of integration find the area bounded by the curve |x| + |y| = 1 .

[Hint: The required region is bounded by lines x + y = 1, x– y = 1, – x + y = 1 and
– x – y = 1].


The area bounded by the y-axis, y = cos x and y = sin x when  0 <= x <= `pi/2`

(A) 2 ( 2 −1)

(B) `sqrt2 -1`

(C) `sqrt2 + 1`

D. `sqrt2`


Using integration, find the area of region bounded by the triangle whose vertices are (–2, 1), (0, 4) and (2, 3).


Show that the rectangle of the maximum perimeter which can be inscribed in the circle of radius 10 cm is a square of side `10sqrt2` cm.


The area between x-axis and curve y = cos x when 0 ≤ x ≤ 2 π is ___________ .


Area enclosed between the curve y2 (2a − x) = x3 and the line x = 2a above x-axis is ___________ .


Solve the following :

Find the area of the region lying between the parabolas :

y2 = 4x and x2 = 4y


The area of the region included between the parabolas y2 = 16x and x2 = 16y, is given by ______ sq.units


The area enclosed between the two parabolas y2 = 20x and y = 2x is ______ sq.units


Find the area of the ellipse `x^2/1 + y^2/4` = 1, in first quadrant


Find the area of sector bounded by the circle x2 + y2 = 25, in the first quadrant−


Find the area of the region lying between the parabolas 4y2 = 9x and 3x2 = 16y


Find the area of the region included between y = x2 + 5 and the line y = x + 7


Find the area of the region included between the parabola y = `(3x^2)/4` and the line 3x – 2y + 12 = 0.


Find the area of the region bounded by the curves x = at2 and y = 2at between the ordinate corresponding to t = 1 and t = 2.


Find the area of a minor segment of the circle x2 + y2 = a2 cut off by the line x = `"a"/2`


Calcualte the area under the curve y = `2sqrt(x)` included between the lines x = 0 and x = 1


Determine the area under the curve y = `sqrt("a"^2 - x^2)` included between the lines x = 0 and x = a.


Area lying between the curves `y^2 = 4x` and `y = 2x`


The value of a for which the area between the curves y2 = 4ax and x2 = 4ay is 1 sq.unit, is ______.


Using Integration, find the area of triangle whose vertices are (– 1, 1), (0, 5) and (3, 2).


Find the area enclosed between 3y = x2, X-axis and x = 2 to x = 3.


Find the area cut off from the parabola 4y = 3x2 by the line 2y = 3x + 12.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×