English

Find the area of the region included between the parabola y = 3x24 and the line 3x – 2y + 12 = 0. - Mathematics

Advertisements
Advertisements

Question

Find the area of the region included between the parabola y = `(3x^2)/4` and the line 3x – 2y + 12 = 0.

Sum

Solution

Solving the equations of the given curves y = `(3x^2)/4` and 3x – 2y + 12 = 0

We get 3x2 – 6x – 24 = 0

⇒ (x – 4)(x + 2) = 0

⇒ x = 4, x = –2

Which give y = 12, y = 3

From Fig.8.6, the required area = area of ABC

= `int_(-2)^4 ((12 + 3x)/2)"d"x - int_(-2)^4 (3x^2)/4  "d"x`

= `(6x +  (3x^2)/4)_-2^4 - |(3x^3)/12|_-2^4`

= 27 sq.units

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Application Of Integrals - Solved Examples [Page 172]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 8 Application Of Integrals
Solved Examples | Q 6 | Page 172

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).


Find the area of the region lying between the parabolas y2 = 4ax and x2 = 4ay.


Find the area of the region bounded by the curves y = x+ 2, xx = 0 and x = 3


Using integration find the area of the triangular region whose sides have the equations y = 2x +1, y = 3x + 1 and = 4.


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is

A. 2 (π – 2)

B. π – 2

C. 2π – 1

D. 2 (π + 2)


Area lying between the curve y2 = 4x and y = 2x is

A. 2/3

B. 1/3

C. 1/4

D. 3/4


The area bounded by the y-axis, y = cos x and y = sin x when  0 <= x <= `pi/2`

(A) 2 ( 2 −1)

(B) `sqrt2 -1`

(C) `sqrt2 + 1`

D. `sqrt2`


Using integration, find the area of region bounded by the triangle whose vertices are (–2, 1), (0, 4) and (2, 3).


Find the area included between the parabolas y2 = 4ax and x2 = 4by.


The area enclosed between the curves y = loge (x + e), x = log\[\left( \frac{1}{y} \right)\] and the x-axis is _______ .


The area between x-axis and curve y = cos x when 0 ≤ x ≤ 2 π is ___________ .


Area enclosed between the curve y2 (2a − x) = x3 and the line x = 2a above x-axis is ___________ .


Area lying between the curves y2 = 4x and y = 2x is


Solve the following :

Find the area of the region lying between the parabolas :

y2 = 4x and x2 = 4y


The area of the region included between the parabolas y2 = 16x and x2 = 16y, is given by ______ sq.units


Find the area of the ellipse `x^2/1 + y^2/4` = 1, in first quadrant


Find the area enclosed between the X-axis and the curve y = sin x for values of x between 0 to 2π


Find the area of the ellipse `x^2/36 + y^2/64` = 1, using integration


Find the area of the region lying between the parabolas 4y2 = 9x and 3x2 = 16y


Find the area of the region included between y = x2 + 5 and the line y = x + 7


Find the area enclosed by the curve x = 3 cost, y = 2 sint.


Calcualte the area under the curve y = `2sqrt(x)` included between the lines x = 0 and x = 1


Determine the area under the curve y = `sqrt("a"^2 - x^2)` included between the lines x = 0 and x = a.


Area lying between the curves `y^2 = 4x` and `y = 2x`


Find the area enclosed between 3y = x2, X-axis and x = 2 to x = 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×