English

Area Lying Between the Curves Y2 = 4x and Y = 2x is - Mathematics

Advertisements
Advertisements

Question

Area lying between the curves y2 = 4x and y = 2x is

Options

  • \[\frac{2}{3}\]
  • \[\frac{1}{3}\]
  • \[\frac{1}{4}\]
  • \[\frac{3}{4}\]
MCQ

Solution

\[\frac{1}{3}\]

The points of intersection of the straight line and the parabola is obtained by solving the simultaneous equations
\[y^2 = 4x\text{ and }y = 2x\]
\[ \Rightarrow \left( 2x \right)^2 = 4x\]
\[ \Rightarrow 4 x^2 = 4x\]
\[ \Rightarrow x\left( x - 1 \right) = 0\]
\[ \Rightarrow x = 0\text{ or }x = 1\]
\[ \Rightarrow y = 0\text{ or }y = 2\]
\[\text{ Thus O }\left( 0, 0 \right)\text{ and A}\left( 1, 2 \right)\text{ are the points of intersection of the parabola and straight line }\]
Shaded area is the required area . 
Using the horizontal strip method , 
\[\text{ Shaded area }= \int_0^2 \left| x_2 - x_1 \right|dy\]
\[ = \int_0^2 \left[ \left( \frac{y}{2} \right) - \left( \frac{y^2}{4} \right) \right] dy\]
\[ = \left[ \frac{1}{2}\left( \frac{y^2}{2} \right) - \frac{1}{4}\left( \frac{y^3}{3} \right) \right]_0^2 \]
\[ = \frac{1}{4}\left( 2^2 \right) - \frac{1}{12}\left( 2^3 \right) - 0\]
\[ = 1 - \frac{8}{12}\]
\[ = \frac{12 - 8}{12}\]
\[ = \frac{1}{3}\text{ sq . units }\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - MCQ [Page 64]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
MCQ | Q 31 | Page 64

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).


Find the area of the region lying between the parabolas y2 = 4ax and x2 = 4ay.


Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y


Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y 2 = 1


Using integration find the area of the triangular region whose sides have the equations y = 2x +1, y = 3x + 1 and = 4.


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is

A. 2 (π – 2)

B. π – 2

C. 2π – 1

D. 2 (π + 2)


Area lying between the curve y2 = 4x and y = 2x is

A. 2/3

B. 1/3

C. 1/4

D. 3/4


Choose the correct answer The area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x is

A. `4/3 (4pi - sqrt3)`

B. `4/3 (4pi + sqrt3)`

C. `4/3 (8pi - sqrt3)`

D.`4/3 (4pi + sqrt3)`


Using integration, find the area of region bounded by the triangle whose vertices are (–2, 1), (0, 4) and (2, 3).


Find the area included between the parabolas y2 = 4ax and x2 = 4by.


The area enclosed between the curves y = loge (x + e), x = log\[\left( \frac{1}{y} \right)\] and the x-axis is _______ .


The area between x-axis and curve y = cos x when 0 ≤ x ≤ 2 π is ___________ .


Area enclosed between the curve y2 (2a − x) = x3 and the line x = 2a above x-axis is ___________ .


The area of the region included between the parabolas y2 = 16x and x2 = 16y, is given by ______ sq.units


The area enclosed between the two parabolas y2 = 20x and y = 2x is ______ sq.units


Find the area of the ellipse `x^2/1 + y^2/4` = 1, in first quadrant


Find the area of the ellipse `x^2/36 + y^2/64` = 1, using integration


Find the area of the region lying between the parabolas 4y2 = 9x and 3x2 = 16y


Find the area of the region included between y = x2 + 5 and the line y = x + 7


Find the area of the region included between the parabola y = `(3x^2)/4` and the line 3x – 2y + 12 = 0.


Find the area of the region bounded by the curves x = at2 and y = 2at between the ordinate corresponding to t = 1 and t = 2.


Find the area of a minor segment of the circle x2 + y2 = a2 cut off by the line x = `"a"/2`


Draw a rough sketch of the curve y = `sqrt(x - 1)` in the interval [1, 5]. Find the area under the curve and between the lines x = 1 and x = 5.


Determine the area under the curve y = `sqrt("a"^2 - x^2)` included between the lines x = 0 and x = a.


The value of a for which the area between the curves y2 = 4ax and x2 = 4ay is 1 sq.unit, is ______.


Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve 4x3 – 3xy2 + 6x2 – 5xy – 8y2 + 9x + 14 = 0 at the point (–2, 3) be A. Then 8A is equal to ______.


Using Integration, find the area of triangle whose vertices are (– 1, 1), (0, 5) and (3, 2).


Find the area enclosed between 3y = x2, X-axis and x = 2 to x = 3.


Find the area cut off from the parabola 4y = 3x2 by the line 2y = 3x + 12.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×