Advertisements
Advertisements
प्रश्न
Find the area included between the parabolas y2 = 4ax and x2 = 4by.
उत्तर
To find the point of intersection of the parabolas substitute \[y = \frac{x^2}{4b}\] in \[y^2 = 4ax\] we get
\[\frac{x^4}{16 b^2} = 4ax\]
\[ \Rightarrow x^4 - 64a b^2 x = 0\]
\[ \Rightarrow x\left( x^3 - 64a b^2 \right) = 0\]
\[ \Rightarrow x = 0\text{ and }x = 4\sqrt[3]{a b^2}\]
\[ \Rightarrow y = 0\text{ and }y = 4\sqrt[3]{a^2 b}\]
Therefore, the required area ABCD = \[\int_0^{4\sqrt[3]{a b^2}} \left( y_1 - y_2 \right) d x\] where \[y_1 = 2\sqrt{ax}\] and \[y_2 = \frac{x^2}{4b}\]
Required area = \[\int_0^{4\sqrt[3]{a b^2}} \left( y_1 - y_2 \right) d x\]
\[ = \int_0^{4\sqrt[3]{a b^2}} \left( 2\sqrt{ax} - \frac{x^2}{4b} \right) d x\]
\[ = \left[ \frac{4\sqrt{a}}{3} x^\frac{3}{2} - \frac{x^3}{12b} \right]_0^{4\sqrt[3]{a b^2}} \]
\[ = \left[ \frac{4\sqrt{a}}{3} \left( 4\sqrt[3]{a b^2} \right)^\frac{3}{2} - \frac{\left( 4\sqrt[3]{a b^2} \right)^3}{12b} \right] - \left[ \frac{4\sqrt{a}}{3} \left( 0 \right)^\frac{3}{2} - \frac{\left( 0 \right)^3}{12a} \right]\]
\[ = \frac{16ab}{3}\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).
Find the area of the region lying between the parabolas y2 = 4ax and x2 = 4ay.
Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y
Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y 2 = 1
Find the area of the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 3
Using integration finds the area of the region bounded by the triangle whose vertices are (–1, 0), (1, 3) and (3, 2).
Using integration find the area of the triangular region whose sides have the equations y = 2x +1, y = 3x + 1 and x = 4.
Area lying between the curve y2 = 4x and y = 2x is
A. 2/3
B. 1/3
C. 1/4
D. 3/4
Using the method of integration find the area bounded by the curve |x| + |y| = 1 .
[Hint: The required region is bounded by lines x + y = 1, x– y = 1, – x + y = 1 and
– x – y = 1].
Choose the correct answer The area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x is
A. `4/3 (4pi - sqrt3)`
B. `4/3 (4pi + sqrt3)`
C. `4/3 (8pi - sqrt3)`
D.`4/3 (4pi + sqrt3)`
The area bounded by the y-axis, y = cos x and y = sin x when 0 <= x <= `pi/2`
(A) 2 ( 2 −1)
(B) `sqrt2 -1`
(C) `sqrt2 + 1`
D. `sqrt2`
Using integration, find the area of region bounded by the triangle whose vertices are (–2, 1), (0, 4) and (2, 3).
The area enclosed between the curves y = loge (x + e), x = loge \[\left( \frac{1}{y} \right)\] and the x-axis is _______ .
The area between x-axis and curve y = cos x when 0 ≤ x ≤ 2 π is ___________ .
Area lying between the curves y2 = 4x and y = 2x is
The area enclosed between the two parabolas y2 = 20x and y = 2x is ______ sq.units
The area of triangle ΔABC whose vertices are A(1, 1), B(2, 1) and C(3, 3) is ______ sq.units
Find the area enclosed between y = cos x and X-axis between the lines x = `pi/2` and x ≤ `(3pi)/2`
Find the area of sector bounded by the circle x2 + y2 = 25, in the first quadrant−
Find the area of the ellipse `x^2/36 + y^2/64` = 1, using integration
Find the area of the region lying between the parabolas 4y2 = 9x and 3x2 = 16y
Find the area of the region included between y = x2 + 5 and the line y = x + 7
Find the area enclosed between the circle x2 + y2 = 9, along X-axis and the line x = y, lying in the first quadrant
Find the area enclosed by the curve x = 3 cost, y = 2 sint.
Find the area of the region bounded by the curves x = at2 and y = 2at between the ordinate corresponding to t = 1 and t = 2.
Find the area of a minor segment of the circle x2 + y2 = a2 cut off by the line x = `"a"/2`
The value of a for which the area between the curves y2 = 4ax and x2 = 4ay is 1 sq.unit, is ______.
Find the area enclosed between 3y = x2, X-axis and x = 2 to x = 3.
Find the area cut off from the parabola 4y = 3x2 by the line 2y = 3x + 12.