हिंदी

Using Integration Find the Area of the Triangular Region Whose Sides Have the Equations Y = 2x +1, Y = 3x + 1 and X = 4. - Mathematics

Advertisements
Advertisements

प्रश्न

Using integration find the area of the triangular region whose sides have the equations y = 2x +1, y = 3x + 1 and = 4.

उत्तर

The equations of sides of the triangle are y = 2x +1, y = 3x + 1, and = 4.

On solving these equations, we obtain the vertices of triangle as A(0, 1), B(4, 13), and C (4, 9).

It can be observed that,

Area (ΔACB) = Area (OLBAO) –Area (OLCAO)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application of Integrals - Exercise 8.2 [पृष्ठ ३७१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 8 Application of Integrals
Exercise 8.2 | Q 5 | पृष्ठ ३७१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region lying between the parabolas y2 = 4ax and x2 = 4ay.


Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y


Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y 2 = 1


Find the area of the region bounded by the curves y = x+ 2, xx = 0 and x = 3


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is

A. 2 (π – 2)

B. π – 2

C. 2π – 1

D. 2 (π + 2)


Using the method of integration find the area bounded by the curve |x| + |y| = 1 .

[Hint: The required region is bounded by lines x + y = 1, x– y = 1, – x + y = 1 and
– x – y = 1].


Choose the correct answer The area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x is

A. `4/3 (4pi - sqrt3)`

B. `4/3 (4pi + sqrt3)`

C. `4/3 (8pi - sqrt3)`

D.`4/3 (4pi + sqrt3)`


Find the area included between the parabolas y2 = 4ax and x2 = 4by.


The area between x-axis and curve y = cos x when 0 ≤ x ≤ 2 π is ___________ .


Area enclosed between the curve y2 (2a − x) = x3 and the line x = 2a above x-axis is ___________ .


Area lying between the curves y2 = 4x and y = 2x is


Solve the following :

Find the area of the region lying between the parabolas :

y2 = 4x and x2 = 4y


The area of the region included between the parabolas y2 = 16x and x2 = 16y, is given by ______ sq.units


The area enclosed between the two parabolas y2 = 20x and y = 2x is ______ sq.units


The area of triangle ΔABC whose vertices are A(1, 1), B(2, 1) and C(3, 3) is ______ sq.units


Find the area enclosed between y = cos x and X-axis between the lines x = `pi/2` and x ≤ `(3pi)/2`


Find the area of the ellipse `x^2/1 + y^2/4` = 1, in first quadrant


Find the area enclosed between the X-axis and the curve y = sin x for values of x between 0 to 2π


Find the area of the ellipse `x^2/36 + y^2/64` = 1, using integration


Find the area of the region lying between the parabolas 4y2 = 9x and 3x2 = 16y


Find the area of a minor segment of the circle x2 + y2 = a2 cut off by the line x = `"a"/2`


Calcualte the area under the curve y = `2sqrt(x)` included between the lines x = 0 and x = 1


Draw a rough sketch of the curve y = `sqrt(x - 1)` in the interval [1, 5]. Find the area under the curve and between the lines x = 1 and x = 5.


Area lying between the curves `y^2 = 4x` and `y = 2x`


The value of a for which the area between the curves y2 = 4ax and x2 = 4ay is 1 sq.unit, is ______.


Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve 4x3 – 3xy2 + 6x2 – 5xy – 8y2 + 9x + 14 = 0 at the point (–2, 3) be A. Then 8A is equal to ______.


Using Integration, find the area of triangle whose vertices are (– 1, 1), (0, 5) and (3, 2).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.