Advertisements
Advertisements
प्रश्न
Calcualte the area under the curve y = `2sqrt(x)` included between the lines x = 0 and x = 1
उत्तर
Given the curves y = `2sqrt(x)`, x = 0 and x = 1.
y = `2sqrt(x)`
⇒ y2 = 4x ......(Parabola)
Required area = `int_0^1 (2sqrt(x)) "d"x`
= `2 xx 2/3 [x^(3/2)]_0^1`
= `4/3 [(1)^(3/2) - 0]`
= `4/3` sq.units
Hence, required area = `4/3` sq.units
APPEARS IN
संबंधित प्रश्न
Find the area of the region lying between the parabolas y2 = 4ax and x2 = 4ay.
Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y
Using integration finds the area of the region bounded by the triangle whose vertices are (–1, 0), (1, 3) and (3, 2).
Area lying between the curve y2 = 4x and y = 2x is
A. 2/3
B. 1/3
C. 1/4
D. 3/4
Find the area bounded by curves {(x, y) : y ≥ x2 and y = |x|}.
Choose the correct answer The area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x is
A. `4/3 (4pi - sqrt3)`
B. `4/3 (4pi + sqrt3)`
C. `4/3 (8pi - sqrt3)`
D.`4/3 (4pi + sqrt3)`
The area bounded by the y-axis, y = cos x and y = sin x when 0 <= x <= `pi/2`
(A) 2 ( 2 −1)
(B) `sqrt2 -1`
(C) `sqrt2 + 1`
D. `sqrt2`
Using integration, find the area of region bounded by the triangle whose vertices are (–2, 1), (0, 4) and (2, 3).
Find the area included between the parabolas y2 = 4ax and x2 = 4by.
The area between x-axis and curve y = cos x when 0 ≤ x ≤ 2 π is ___________ .
The area of the region included between the parabolas y2 = 16x and x2 = 16y, is given by ______ sq.units
The area enclosed between the two parabolas y2 = 20x and y = 2x is ______ sq.units
The area of triangle ΔABC whose vertices are A(1, 1), B(2, 1) and C(3, 3) is ______ sq.units
Find the area of the ellipse `x^2/1 + y^2/4` = 1, in first quadrant
Find the area enclosed between the X-axis and the curve y = sin x for values of x between 0 to 2π
Find the area of the ellipse `x^2/36 + y^2/64` = 1, using integration
Find the area of the region included between y = x2 + 5 and the line y = x + 7
Find the area of the region included between the parabola y = `(3x^2)/4` and the line 3x – 2y + 12 = 0.
Find the area of the region bounded by the curves x = at2 and y = 2at between the ordinate corresponding to t = 1 and t = 2.
Find the area of a minor segment of the circle x2 + y2 = a2 cut off by the line x = `"a"/2`
Draw a rough sketch of the curve y = `sqrt(x - 1)` in the interval [1, 5]. Find the area under the curve and between the lines x = 1 and x = 5.
Determine the area under the curve y = `sqrt("a"^2 - x^2)` included between the lines x = 0 and x = a.
Area lying between the curves `y^2 = 4x` and `y = 2x`
Find the area enclosed between 3y = x2, X-axis and x = 2 to x = 3.
Find the area cut off from the parabola 4y = 3x2 by the line 2y = 3x + 12.