हिंदी

Determine the area under the curve y = aa2-x2 included between the lines x = 0 and x = a. - Mathematics

Advertisements
Advertisements

प्रश्न

Determine the area under the curve y = `sqrt("a"^2 - x^2)` included between the lines x = 0 and x = a.

योग

उत्तर


Here, we are given y = `sqrt("a"^2 - x^2)`

⇒ y2 = a2 – x2

⇒ x2 + y2 = a2

Area of the shaded region

= `2[(1)^(3/2) - 0] - 3/2[(1)^2 - 0]`

= `[x/2 sqrt("a"^2 - x^2) + "a"^2/2 sin^-1  x/"a"]_0^"a"`

= `["a"/2 sqrt("a"^2 - "a"^2) + "a"^2/2 sin^-1  "a"/"a" - 0 - 0]`

= `"a"^2/2 sin^-1 (1)`

= `"a"^2/2 * pi/2`

= `(pi"a"^2)/4`

Hence, the required area = `(pi"a"^2)/4` sq.units.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application Of Integrals - Exercise [पृष्ठ १७७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 8 Application Of Integrals
Exercise | Q 12 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y 2 = 1


Find the area of the region bounded by the curves y = x+ 2, xx = 0 and x = 3


Using integration find the area of the triangular region whose sides have the equations y = 2x +1, y = 3x + 1 and = 4.


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is

A. 2 (π – 2)

B. π – 2

C. 2π – 1

D. 2 (π + 2)


Using the method of integration find the area bounded by the curve |x| + |y| = 1 .

[Hint: The required region is bounded by lines x + y = 1, x– y = 1, – x + y = 1 and
– x – y = 1].


Find the area bounded by curves {(x, y) : y ≥ x2 and y = |x|}.


Choose the correct answer The area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x is

A. `4/3 (4pi - sqrt3)`

B. `4/3 (4pi + sqrt3)`

C. `4/3 (8pi - sqrt3)`

D.`4/3 (4pi + sqrt3)`


The area bounded by the y-axis, y = cos x and y = sin x when  0 <= x <= `pi/2`

(A) 2 ( 2 −1)

(B) `sqrt2 -1`

(C) `sqrt2 + 1`

D. `sqrt2`


Using integration, find the area of region bounded by the triangle whose vertices are (–2, 1), (0, 4) and (2, 3).


Find the area included between the parabolas y2 = 4ax and x2 = 4by.


The area between x-axis and curve y = cos x when 0 ≤ x ≤ 2 π is ___________ .


Area enclosed between the curve y2 (2a − x) = x3 and the line x = 2a above x-axis is ___________ .


Area lying between the curves y2 = 4x and y = 2x is


Find the area of the ellipse `x^2/1 + y^2/4` = 1, in first quadrant


Find the area of the region lying between the parabolas 4y2 = 9x and 3x2 = 16y


Find the area enclosed between the circle x2 + y2 = 9, along X-axis and the line x = y, lying in the first quadrant


Find the area of the region included between the parabola y = `(3x^2)/4` and the line 3x – 2y + 12 = 0.


Find the area of the region bounded by the curves x = at2 and y = 2at between the ordinate corresponding to t = 1 and t = 2.


Find the area of a minor segment of the circle x2 + y2 = a2 cut off by the line x = `"a"/2`


Calcualte the area under the curve y = `2sqrt(x)` included between the lines x = 0 and x = 1


Area lying between the curves `y^2 = 4x` and `y = 2x`


Find the area enclosed between 3y = x2, X-axis and x = 2 to x = 3.


Find the area cut off from the parabola 4y = 3x2 by the line 2y = 3x + 12.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×