Advertisements
Advertisements
प्रश्न
Find the area of a minor segment of the circle x2 + y2 = a2 cut off by the line x = `"a"/2`
उत्तर
Solving the equation x2 + y2 = a2 and x = `"a"/2`
We obtain their points of intersection which are `("a"/2, sqrt(3) "a"/2)` and `("a"/2, - (sqrt(3)"a")/2)`.
Hence, From the figure in the question, we get
Required Area = 2 Area of OAB
= `2 int_("a"/2)^"a" sqrt("a"^2 - x^2) "d"x`
= `2[x/2 sqrt("a"^2 - x^2) + "a"^2/2 sin^-1 x/"a"]_("a"/2)^"a"`
= `2["a"^2/2 * pi/2 - "a"/4 * "a" sqrt(3)/2 - "a"^2/2 * pi/6]`
= `"a"^2/12 (6pi - 3sqrt(3) - 2pi)`
= `"a"^2/12 (4pi - 3sqrt(3))` sq.units
APPEARS IN
संबंधित प्रश्न
Find the area of the region lying between the parabolas y2 = 4ax and x2 = 4ay.
Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y
Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y 2 = 1
Find the area of the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 3
Using integration find the area of the triangular region whose sides have the equations y = 2x +1, y = 3x + 1 and x = 4.
Area lying between the curve y2 = 4x and y = 2x is
A. 2/3
B. 1/3
C. 1/4
D. 3/4
Using the method of integration find the area bounded by the curve |x| + |y| = 1 .
[Hint: The required region is bounded by lines x + y = 1, x– y = 1, – x + y = 1 and
– x – y = 1].
The area bounded by the y-axis, y = cos x and y = sin x when 0 <= x <= `pi/2`
(A) 2 ( 2 −1)
(B) `sqrt2 -1`
(C) `sqrt2 + 1`
D. `sqrt2`
Find the area included between the parabolas y2 = 4ax and x2 = 4by.
The area enclosed between the curves y = loge (x + e), x = loge \[\left( \frac{1}{y} \right)\] and the x-axis is _______ .
Area enclosed between the curve y2 (2a − x) = x3 and the line x = 2a above x-axis is ___________ .
Solve the following :
Find the area of the region lying between the parabolas :
y2 = 4x and x2 = 4y
The area of the region included between the parabolas y2 = 16x and x2 = 16y, is given by ______ sq.units
Find the area of sector bounded by the circle x2 + y2 = 25, in the first quadrant−
Find the area of the ellipse `x^2/36 + y^2/64` = 1, using integration
Find the area of the region lying between the parabolas 4y2 = 9x and 3x2 = 16y
Find the area enclosed between the circle x2 + y2 = 9, along X-axis and the line x = y, lying in the first quadrant
Find the area enclosed by the curve x = 3 cost, y = 2 sint.
Find the area of the region included between the parabola y = `(3x^2)/4` and the line 3x – 2y + 12 = 0.
Calcualte the area under the curve y = `2sqrt(x)` included between the lines x = 0 and x = 1
Determine the area under the curve y = `sqrt("a"^2 - x^2)` included between the lines x = 0 and x = a.
Using Integration, find the area of triangle whose vertices are (– 1, 1), (0, 5) and (3, 2).
Find the area enclosed between 3y = x2, X-axis and x = 2 to x = 3.
Find the area cut off from the parabola 4y = 3x2 by the line 2y = 3x + 12.