Advertisements
Advertisements
प्रश्न
Find the area of a minor segment of the circle x2 + y2 = a2 cut off by the line x = `"a"/2`
उत्तर
Solving the equation x2 + y2 = a2 and x = `"a"/2`
We obtain their points of intersection which are `("a"/2, sqrt(3) "a"/2)` and `("a"/2, - (sqrt(3)"a")/2)`.
Hence, From the figure in the question, we get
Required Area = 2 Area of OAB
= `2 int_("a"/2)^"a" sqrt("a"^2 - x^2) "d"x`
= `2[x/2 sqrt("a"^2 - x^2) + "a"^2/2 sin^-1 x/"a"]_("a"/2)^"a"`
= `2["a"^2/2 * pi/2 - "a"/4 * "a" sqrt(3)/2 - "a"^2/2 * pi/6]`
= `"a"^2/12 (6pi - 3sqrt(3) - 2pi)`
= `"a"^2/12 (4pi - 3sqrt(3))` sq.units
APPEARS IN
संबंधित प्रश्न
Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).
Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y
Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y 2 = 1
Using integration finds the area of the region bounded by the triangle whose vertices are (–1, 0), (1, 3) and (3, 2).
Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is
A. 2 (π – 2)
B. π – 2
C. 2π – 1
D. 2 (π + 2)
Using the method of integration find the area bounded by the curve |x| + |y| = 1 .
[Hint: The required region is bounded by lines x + y = 1, x– y = 1, – x + y = 1 and
– x – y = 1].
Choose the correct answer The area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x is
A. `4/3 (4pi - sqrt3)`
B. `4/3 (4pi + sqrt3)`
C. `4/3 (8pi - sqrt3)`
D.`4/3 (4pi + sqrt3)`
The area bounded by the y-axis, y = cos x and y = sin x when 0 <= x <= `pi/2`
(A) 2 ( 2 −1)
(B) `sqrt2 -1`
(C) `sqrt2 + 1`
D. `sqrt2`
Show that the rectangle of the maximum perimeter which can be inscribed in the circle of radius 10 cm is a square of side `10sqrt2` cm.
Find the area included between the parabolas y2 = 4ax and x2 = 4by.
Solve the following :
Find the area of the region lying between the parabolas :
y2 = 4x and x2 = 4y
The area of triangle ΔABC whose vertices are A(1, 1), B(2, 1) and C(3, 3) is ______ sq.units
Find the area of the ellipse `x^2/1 + y^2/4` = 1, in first quadrant
Find the area of sector bounded by the circle x2 + y2 = 25, in the first quadrant−
Find the area enclosed between the X-axis and the curve y = sin x for values of x between 0 to 2π
Find the area of the region included between y = x2 + 5 and the line y = x + 7
Find the area enclosed between the circle x2 + y2 = 9, along X-axis and the line x = y, lying in the first quadrant
Find the area enclosed by the curve x = 3 cost, y = 2 sint.
Calcualte the area under the curve y = `2sqrt(x)` included between the lines x = 0 and x = 1
Draw a rough sketch of the curve y = `sqrt(x - 1)` in the interval [1, 5]. Find the area under the curve and between the lines x = 1 and x = 5.
Determine the area under the curve y = `sqrt("a"^2 - x^2)` included between the lines x = 0 and x = a.
Area lying between the curves `y^2 = 4x` and `y = 2x`
The value of a for which the area between the curves y2 = 4ax and x2 = 4ay is 1 sq.unit, is ______.
Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve 4x3 – 3xy2 + 6x2 – 5xy – 8y2 + 9x + 14 = 0 at the point (–2, 3) be A. Then 8A is equal to ______.
Using Integration, find the area of triangle whose vertices are (– 1, 1), (0, 5) and (3, 2).
Find the area cut off from the parabola 4y = 3x2 by the line 2y = 3x + 12.