मराठी

Using the Method of Integration Find the Area Bounded by the Curve |X| + |Y| = 1 . - Mathematics

Advertisements
Advertisements

प्रश्न

Using the method of integration find the area bounded by the curve |x| + |y| = 1 .

[Hint: The required region is bounded by lines x + y = 1, x– y = 1, – x + y = 1 and
– x – y = 1].

उत्तर

The area bounded by the curve, |x| + |y| = 1 , is represented by the shaded region ADCB as

The curve intersects the axes at points A (0, 1), B (1, 0), C (0, –1), and D (–1, 0).

It can be observed that the given curve is symmetrical about x-axis and y-axis.

∴ Area ADCB = 4 × Area OBAO

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application of Integrals - Exercise 8.3 [पृष्ठ ३७५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 8 Application of Integrals
Exercise 8.3 | Q 11 | पृष्ठ ३७५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y 2 = 1


Using integration finds the area of the region bounded by the triangle whose vertices are (–1, 0), (1, 3) and (3, 2).


Using integration find the area of the triangular region whose sides have the equations y = 2x +1, y = 3x + 1 and = 4.


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is

A. 2 (π – 2)

B. π – 2

C. 2π – 1

D. 2 (π + 2)


Area lying between the curve y2 = 4x and y = 2x is

A. 2/3

B. 1/3

C. 1/4

D. 3/4


Find the area bounded by curves {(x, y) : y ≥ x2 and y = |x|}.


Choose the correct answer The area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x is

A. `4/3 (4pi - sqrt3)`

B. `4/3 (4pi + sqrt3)`

C. `4/3 (8pi - sqrt3)`

D.`4/3 (4pi + sqrt3)`


The area bounded by the y-axis, y = cos x and y = sin x when  0 <= x <= `pi/2`

(A) 2 ( 2 −1)

(B) `sqrt2 -1`

(C) `sqrt2 + 1`

D. `sqrt2`


Using integration, find the area of region bounded by the triangle whose vertices are (–2, 1), (0, 4) and (2, 3).


Show that the rectangle of the maximum perimeter which can be inscribed in the circle of radius 10 cm is a square of side `10sqrt2` cm.


Find the area included between the parabolas y2 = 4ax and x2 = 4by.


The area between x-axis and curve y = cos x when 0 ≤ x ≤ 2 π is ___________ .


The area of the region included between the parabolas y2 = 16x and x2 = 16y, is given by ______ sq.units


The area enclosed between the two parabolas y2 = 20x and y = 2x is ______ sq.units


Find the area enclosed between y = cos x and X-axis between the lines x = `pi/2` and x ≤ `(3pi)/2`


Find the area of sector bounded by the circle x2 + y2 = 25, in the first quadrant−


Find the area enclosed between the X-axis and the curve y = sin x for values of x between 0 to 2π


Find the area of the ellipse `x^2/36 + y^2/64` = 1, using integration


Find the area of the region included between y = x2 + 5 and the line y = x + 7


Find the area enclosed by the curve x = 3 cost, y = 2 sint.


Find the area of the region included between the parabola y = `(3x^2)/4` and the line 3x – 2y + 12 = 0.


Find the area of the region bounded by the curves x = at2 and y = 2at between the ordinate corresponding to t = 1 and t = 2.


Calcualte the area under the curve y = `2sqrt(x)` included between the lines x = 0 and x = 1


Determine the area under the curve y = `sqrt("a"^2 - x^2)` included between the lines x = 0 and x = a.


Area lying between the curves `y^2 = 4x` and `y = 2x`


The value of a for which the area between the curves y2 = 4ax and x2 = 4ay is 1 sq.unit, is ______.


Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve 4x3 – 3xy2 + 6x2 – 5xy – 8y2 + 9x + 14 = 0 at the point (–2, 3) be A. Then 8A is equal to ______.


Using Integration, find the area of triangle whose vertices are (– 1, 1), (0, 5) and (3, 2).


Find the area enclosed between 3y = x2, X-axis and x = 2 to x = 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×