मराठी

Find the area of the region bounded by the curves x = at2 and y = 2at between the ordinate corresponding to t = 1 and t = 2. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region bounded by the curves x = at2 and y = 2at between the ordinate corresponding to t = 1 and t = 2.

बेरीज

उत्तर

Given that x = at2  ......(i)

y = 2at  ......(ii)

t = `y/(2"a")`

Putting the value of t in (i)

Wwe get y2 = 4ax

Putting t = 1 and t = 2 in (i)

We get x = a, and x = 4a

Required area = 2 area of ABCD 

= `2 int_"a"^(4"a") y"d"x`

= `2 xx 2 int_"a"^(4"a") sqrt("a"x)  "d"x`

= `8sqrt("a") |(x)^(3/2)/3|_"a"^(4"a")`

= `56/3 "a"^2` sq.units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application Of Integrals - Solved Examples [पृष्ठ १७३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 8 Application Of Integrals
Solved Examples | Q 7 | पृष्ठ १७३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y


Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y 2 = 1


Find the area of the region bounded by the curves y = x+ 2, xx = 0 and x = 3


Using integration find the area of the triangular region whose sides have the equations y = 2x +1, y = 3x + 1 and = 4.


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is

A. 2 (π – 2)

B. π – 2

C. 2π – 1

D. 2 (π + 2)


Using the method of integration find the area bounded by the curve |x| + |y| = 1 .

[Hint: The required region is bounded by lines x + y = 1, x– y = 1, – x + y = 1 and
– x – y = 1].


Find the area bounded by curves {(x, y) : y ≥ x2 and y = |x|}.


Choose the correct answer The area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x is

A. `4/3 (4pi - sqrt3)`

B. `4/3 (4pi + sqrt3)`

C. `4/3 (8pi - sqrt3)`

D.`4/3 (4pi + sqrt3)`


Using integration, find the area of region bounded by the triangle whose vertices are (–2, 1), (0, 4) and (2, 3).


Find the area included between the parabolas y2 = 4ax and x2 = 4by.


The area enclosed between the curves y = loge (x + e), x = log\[\left( \frac{1}{y} \right)\] and the x-axis is _______ .


Area lying between the curves y2 = 4x and y = 2x is


The area of the region included between the parabolas y2 = 16x and x2 = 16y, is given by ______ sq.units


The area enclosed between the two parabolas y2 = 20x and y = 2x is ______ sq.units


Find the area enclosed between y = cos x and X-axis between the lines x = `pi/2` and x ≤ `(3pi)/2`


Find the area of sector bounded by the circle x2 + y2 = 25, in the first quadrant−


Find the area enclosed between the X-axis and the curve y = sin x for values of x between 0 to 2π


Find the area of the region included between y = x2 + 5 and the line y = x + 7


Find the area enclosed between the circle x2 + y2 = 9, along X-axis and the line x = y, lying in the first quadrant


Find the area of a minor segment of the circle x2 + y2 = a2 cut off by the line x = `"a"/2`


Determine the area under the curve y = `sqrt("a"^2 - x^2)` included between the lines x = 0 and x = a.


The value of a for which the area between the curves y2 = 4ax and x2 = 4ay is 1 sq.unit, is ______.


Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve 4x3 – 3xy2 + 6x2 – 5xy – 8y2 + 9x + 14 = 0 at the point (–2, 3) be A. Then 8A is equal to ______.


Find the area enclosed between 3y = x2, X-axis and x = 2 to x = 3.


Find the area cut off from the parabola 4y = 3x2 by the line 2y = 3x + 12.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×