हिंदी

Sketch the region {(x,0):y=4-x2} and x-axis. Find the area of the region using integration. - Mathematics

Advertisements
Advertisements

प्रश्न

Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.

योग

उत्तर


Given that `{(x, 0) : y = sqrt(4 - x^2)}` 

⇒ y2 = 4 – x2

⇒ x2 + y2 = 4 which is a circle.

Required area = `2 * int_0^2 sqrt(4 - x^2)  "d"x`

Since circle is symmetrical about y-axis

= `2 * int_0^2 sqrt((2)^2 - x^2)  "d"x`

= `2 * [x/2 sqrt(4 - x^2) + 4/2 sin^-1  x/2]_0^2`

= `2[(2/2 sqrt(4 - 4) + 2 sin^-1 (1)) - (0 + 0)]`

= `2[2 * pi/2]`

= 2π sq.units

Hence, the required area = 2π sq.units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application Of Integrals - Exercise [पृष्ठ १७६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 8 Application Of Integrals
Exercise | Q 8 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]  and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.

 

 


Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]


Find the area of the region bounded by x2 = 4ay and its latusrectum.


Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.


Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.


Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.


Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.


Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.


Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.


Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.


Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×