हिंदी

Find the Area of the Minor Segment of the Circle X 2 + Y 2 = a 2 Cut off by the Line X = a 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]

योग

उत्तर

The equation of the circle is \[x^2 + y^2 = a^2\]

Centre of the circle = (0, 0) and radius = a.

The line \[x = \frac{a}{2}\] is parallel to y-axis and intersects the x-axis at \[\left( \frac{a}{2}, 0 \right)\]

Required area = Area of the shaded region
                      = 2 × Area of the region ABDA

\[= 2 \times \int_\frac{a}{2}^a y_{\text{ circle }} dx\]
\[ = 2 \int_\frac{a}{2}^a \sqrt{a^2 - x^2}dx\]
\[ = \left.2 \left( \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right)\right|_\frac{a}{2}^a \]
\[ = 2\left[ \left( 0 + \frac{a^2}{2} \sin^{- 1} 1 \right) - \left( \frac{a}{4} \times \sqrt{a^2 - \frac{a^2}{4}} + \frac{a^2}{2} \sin^{- 1} \frac{1}{2} \right) \right]\]
\[= 2\left( \frac{a^2}{2} \times \frac{\pi}{2} - \frac{a}{4} \times \frac{\sqrt{3}a}{2} - \frac{a^2}{2} \times \frac{\pi}{6} \right)\]

\[ = \frac{a^2 \pi}{2} - \frac{\sqrt{3} a^2}{4} - \frac{a^2 \pi}{6}\]
\[ = \frac{6 a^2 \pi - 3\sqrt{3} a^2 - 2 a^2 \pi}{12}\]
\[ = \frac{a^2}{12}\left( 4\pi - 3\sqrt{3} \right)\text{ square units }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - Exercise 21.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
Exercise 21.1 | Q 27 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]


Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.


Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.


Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.


The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is


Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.


Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them. 


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0


Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.


The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.


The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.


Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


Find the area bounded by the curve y = |x – 1| and y = 1, using integration.


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.


The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×