Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.
उत्तर
The parabola y2 = 2x opens towards the positive x-axis and its focus is \[\left( \frac{1}{2}, 0 \right)\]
The straight line x − y = 4 passes through (4, 0) and (0, −4).
Solving y2 = 2x and x − y = 4, we get
\[y^2 = 2\left( y + 4 \right)\]
\[ \Rightarrow y^2 - 2y - 8 = 0\]
\[ \Rightarrow \left( y - 4 \right)\left( y + 2 \right) = 0\]
\[ \Rightarrow y = 4\text{ or }y = - 2\]
So, the points of intersection of the given parabola and the line are A(8, 4) and B(2, −2).
∴ Required area = Area of the shaded region OABO
\[= \int_{- 2}^4 x_{\text{ line }} dy - \int_{- 2}^4 x_{\text{ parabola }} dy\]
\[ = \int_{- 2}^4 \left( y + 4 \right)dy - \int_{- 2}^4 \frac{y^2}{2}dy\]
\[ = \left.\frac{\left( y + 4 \right)^2}{2}\right|_{- 2}^4 - \left.\frac{1}{2} \times \frac{y^3}{3}\right|_{- 2}^4 \]
\[ = \frac{1}{2}\left( 64 - 4 \right) - \frac{1}{6}\left[ 64 - \left( - 8 \right) \right]\]
\[ = 30 - 12\]
\[ = 18\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.
triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.
Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.
Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).
The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.
[Hint: y = x2 if x > 0 and y = –x2 if x < 0]
Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.
Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?
Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.
Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.
Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.
Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).
Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.
If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.
If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2
The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .
Area bounded by parabola y2 = x and straight line 2y = x is _________ .
The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .
Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.
Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.
The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.
Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.
Find the area bounded by the curve y = sinx between x = 0 and x = 2π.
Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.
Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.
Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is
Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.
The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0 ≤ x - (<pi)/2` is
Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.
Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.
The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.
Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.
Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.
Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.