Advertisements
Advertisements
प्रश्न
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
उत्तर
Given that: y = `sqrt(x)`, x = 2y + 3, first quadrant and x-axis.
Solving y = `sqrt(x)` and x = 2y + 3
We get y = `sqrt(2y + 3)`
⇒ y2 = 2y + 3
⇒ y2 – 2y – 3 = 0
⇒ y2 – 3y + y – 3 = 0
⇒ y(y – 3) + 1(y – 3) = 0
⇒ (y + 1)(y – 3) = 0
∴ y = –1, 3
Area of shaded region
= `int_0^3 (2y + 3) "d"y - int_0^3 "y"^2 "d"y`
= `[2 y^2/2 + 3y]_0^3 - 1/3 [y^3]_0^3`
= `[(9 + 9) - (0 + 0)] - 1/3[27 - 0]`
= 18 – 9
= 9 sq.units
Hence, the required area = 9 sq.units
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.
Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.
Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3y + 5 = 0
Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.
Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.
Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.
Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.
Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.
Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.
Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.
The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)
The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .
The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .
The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .
Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is
Find the area of the curve y = sin x between 0 and π.
The area of the region bounded by the curve y = x2 and the line y = 16 ______.
Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py
Find the area of region bounded by the line x = 2 and the parabola y2 = 8x
Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is
Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.
Find the area bounded by the curve y = |x – 1| and y = 1, using integration.
Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.
Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.