हिंदी

Find the area of the smaller region bounded by the curves x225+y216 = 1 and x5+y4 = 1, using integration. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.

योग

उत्तर

`x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1

`\implies` y = `4/5 sqrt(25 - x^2)`


The points of intersection of the given curve and line are A(0, 4) and B(5, 0).

Area of shaded region = Area of ellipse in I quadrant – Area of triangle ΔOAB

= `int_0^5 (4/5 sqrt(25 - x^2))dx - 1/2 xx 5 xx 4`

= `4/5 [x/2 sqrt(25 - x^2) + 25/2 sin^-1  x/5]_0^5 - 10  ...[∵ int (sqrt(a^2 - x^2))dx = x/2 sqrt(a^2 - x^2) + a^2/2 sin^-1  x/a]`

= `4/5 [0 + 25/2 sin^-1 1] - 10`

= `10 xx π/2 - 10`

= (5π – 10) sq. units.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Outside Delhi Set 3

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Determine the area under the curve y = \[\sqrt{a^2 - x^2}\]  included between the lines x = 0 and x = a.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.


The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


Find the area of the curve y = sin x between 0 and π.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×