Advertisements
Advertisements
प्रश्न
Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.
उत्तर
The table for different values of x and y is
X | 0 | `pi/6` | `pi/2` | `(5pi)/6` | `pi` |
sin x | 0 | `1/2` | 1 | `1/2` | 0 |
\[y = \frac{\pi}{2} + 2 \sin^2 x\] | 0 | `2/3` | `5/2` | `4/3` | 1 |
\[y = \frac{x}{\pi} + 2 \sin^2 x ,\text{ is an arc cutting }y -\text{ axis at O(0, 0) and cutting }x = \pi \text{ at } \left( \pi, 1 \right)\]
\[\text{ Consider a vertical strip of length }= \left| y \right| \text{ and width }= dx \text{ in the first quadrant }\]
\[ \therefore\text{ Area of approximating rectangle }= \left| y \right| dx\]
\[\text{ The approximating rectangle moves from }x = 0\text{ to }x = \pi\]
\[ \Rightarrow\text{ Area of the shaded area }= \int_0^\pi \left| y \right| dx\]
\[ \Rightarrow A = \int_0^\pi y dx ..............\left\{ As, y > 0 \Rightarrow \left| y \right| = y \right\}\]
\[ \Rightarrow A = \int_0^\pi \left( \frac{x}{\pi} + 2 \sin^2 x \right) dx\]
\[ \Rightarrow A = \frac{1}{\pi} \int_0^\pi x dx + 2 \int_0^\pi \sin^2 x dx\]
\[ \Rightarrow A = \frac{1}{\pi} \left[ \frac{x^2}{2} \right]_0^\pi + 2 \left[ \frac{x}{2} - \frac{1}{2}\sin x \cos x \right]_0^\pi \]
\[ \Rightarrow A = \frac{\pi^2}{2\pi} + \frac{2}{2}\left[ \pi - \frac{1}{2}\sin \pi \cos \pi - 0 \right]\]
\[ \Rightarrow A = \frac{\pi}{2} + \pi\]
\[ \Rightarrow A = \frac{3\pi}{2}\text{ sq . units }\]
\[ \therefore\text{ Area of the curve enclosed between }x = 0\text{ and }x = \pi\text{ is }\frac{3\pi}{2}\text{ sq . units }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.
Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x
Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Sketch the graph of y = \[\sqrt{x + 1}\] in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Determine the area under the curve y = \[\sqrt{a^2 - x^2}\] included between the lines x = 0 and x = a.
Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.
Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.
Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).
Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.
Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\] in the first quadrant and x-axis.
Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).
Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.
Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.
Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.
If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .
If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2
The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .
The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .
The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .
The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .
The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0
Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2
Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.
The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.
The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.
Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.
The area of the region bounded by the line y = 4 and the curve y = x2 is ______.
What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.
The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by
The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0 ≤ x - (<pi)/2` is
Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.
The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.
The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.