Advertisements
Advertisements
प्रश्न
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
उत्तर
Let A(1, 2), B (2, 0) and C (4, 3) be the vertices of a triangle ABC
APPEARS IN
संबंधित प्रश्न
Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.
Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3y + 5 = 0
Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.
Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.
Find the area of the region included between the parabola y2 = x and the line x + y = 2.
Find the area of the region in the first quadrant enclosed by x-axis, the line y =
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.
Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.
If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2
The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .
Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is
Using integration, find the area of the smaller region bounded by the ellipse
The area enclosed by the ellipse
Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.
The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤
Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.
The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.
The area of the region bounded by the ellipse
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.
Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is
The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is
Find the area of the region bounded by the curve
Find the area of the region enclosed by the curves y2 = x, x =
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.
Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.
Evaluate: