हिंदी

The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ π2 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.

विकल्प

  • `sqrt(2)` sq.units

  • `(sqrt(2) + 1)` sq.units

  • `(sqrt(2) - 1)` sq.units

  • `(2sqrt(2) - 1)` sq.units

MCQ
रिक्त स्थान भरें

उत्तर

The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is `(sqrt(2) - 1)` sq.units.

Explanation:

Given that y-axis, y = cos x, y = sin x, 0 ≤ x ≤ `pi/2`

Required area = `int_0^(pi/4) cos x  "d"x - int_0^(pi/4) sin x  "d"x`

= `[sin x]_0^(pi/4) - [- cos x]_0^(pi/4)`

= `[sin  pi/4 - sin 0] + [cos  pi/4 - cos 0]`

= `[1/sqrt(2) - 0 + 1/sqrt(2) - 1]`

= `2/sqrt(2) - 1`

= `(sqrt(2) - 1)` sq.units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application Of Integrals - Exercise [पृष्ठ १७७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 8 Application Of Integrals
Exercise | Q 24 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5


Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]  and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.

 

 


Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]


Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.


Find the area of the region included between the parabola y2 = x and the line x + y = 2.


Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.


Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.


The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×