हिंदी

Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = 3y and x-axis lying in the first quadrant. - Mathematics

Advertisements
Advertisements

प्रश्न

Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.

योग

उत्तर

Given equation of circle x2 + y2 = 4

or x2 + y2 = (2)2

∴ Radius = 2


So, point A is (2, 0) and point B is (0, 2)

Let line x = `sqrt(3)`y intersect the circle at point C

On solving x2 + y2 = 4 and x = `sqrt(3)`y, we get

`(sqrt(3)y)^2 + y^2` = 4

⇒ 3y2 + y2 = 4

⇒ 4y2

⇒ y2 = 1

⇒ y = ±1

For y = 1, x = `sqrt(3)` and y = –1, x = `-sqrt(3)`

Since point C is in 1st quadrant

∴ C = `(sqrt(3), 1)`

∴ Required Area = `int_0^sqrt(3) y_"line" dx + int_sqrt(3)^2 y_"circle"dx`

= `int_0^sqrt(3) x/sqrt(3)dx + int_sqrt(3)^2 sqrt(4 - x^2)dx`

= `1/sqrt(3) int_0^sqrt(3) xdx + int_sqrt(3)^2 sqrt(4 - x^2)dx`

= `1/sqrt(3)[x^2/2]_0^sqrt(3) + [1/2xsqrt(4 - x^2) + (2)^2/2 sin^-1 x/2]_sqrt(3)^2`

= `1/(2sqrt(3)){(sqrt(3))^2 - 0} + [{1/2(2)sqrt(4 - 2^2) + 2sin^-1(2/2)} - {1/2(sqrt(3))sqrt(4 - (sqrt(3))^2) - 2sin^-1  sqrt(3)/2}]`

= `sqrt(3)/2 + 2sin^-1(1) - sqrt(3)/2 - 2sin^-1  sqrt(3)/2`

= `2 π/2 - 2 π/3`

= `π - (2π)/3`

= `π/3` sq.units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Term 2 - Outside Delhi Set 2

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.


Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).


Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.


Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.


Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
                                   OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.


Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.


Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×