Advertisements
Advertisements
प्रश्न
Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.
उत्तर
The equations of the given curves are
x2 = y .....(1)
x – y + 2 = 0 .....(2)
The equation (1) represents a parabola that has its vertex at the origin, axis along the positive direction of y-axis and opens upward.
The equation (2) represents a straight line that intersects the x-axis at (–2, 0) and the y-axis at (0, 2).
Solving (1) and (2), we have
\[x^2 = x + 2\]
\[ \Rightarrow x^2 - x - 2 = 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x + 1 \right) = 0\]
\[ \Rightarrow x - 2 = 0 \text { or} x + 1 = 0\]
\[ \Rightarrow x = 2 \text { or} x = - 1\]
When x = 2, y = 2 + 2 = 4
When x = –1, y = –1 + 2 = 1
Thus, the points of intersection of the given curves (1) and (2) are (–1, 1) and (2, 4).
The graph of the given curves is shown below and the shaded region OBDO represents the area bounded by the line and the parabola.
∴ Area of the required region OBDO
\[= \int_{- 1}^2 y_{\text{ line }} dx - \int_{- 1}^2 y_{\text { parabola }} dx\]
\[= \int_{- 1}^2 \left( x + 2 \right)dx - \int_{- 1}^2 x^2 dx\]
\[= \left( \frac{x^2}{2} + 2x \right)_{- 1}^2 - \left( \frac{x^3}{3} \right)_{- 1}^2 \]
\[ = \left[ \left( \frac{4}{2} + 2 \times 2 \right) - \left( \frac{1}{2} + 2 \times \left( - 1 \right) \right) \right] - \left[ \frac{8}{3} - \frac{\left( - 1 \right)}{3} \right]\]
\[ = 6 + \frac{3}{2} - \frac{8}{3} - \frac{1}{3}\]
\[ = \frac{9}{2} \text { square units }\]
Thus, the area of the region bounded by the line and given curve is \[\frac{9}{2}\] square units.
APPEARS IN
संबंधित प्रश्न
Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).
Find the area bounded by the curve y = sin x between x = 0 and x = 2π.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.
Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.
Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.
Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).
Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.
Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\] in the first quadrant and x-axis.
Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).
Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .
The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .
Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is
Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is
Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x
Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.
The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.
Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.
Find the area bounded by the curve y = sinx between x = 0 and x = 2π.
Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.
Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.
The area of the region bounded by the circle x2 + y2 = 1 is ______.
Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.
The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.
Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.
The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.
Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.
Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.