Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.
उत्तर
We have y2 = 4x and x2 = 4y.
y = `x^2/4`
⇒ `(x^2/4)^2` = 4x
⇒ `x^4/16` = 4x
⇒ x4 = 64x
⇒ x4 – 64x = 0
⇒ x(x3 – 64) = 0
∴ x = 0, x = 4
Required area = `int_0^4 sqrt(4x) "d"x - int_0^4 x^2/4 "d"x`
= `2 int_0^4 sqrt(x) "d"x - 1/4 int_0^4 x^2 "d"x`
= `2 * 2/3 [x^(3/2)]_0^4 - 1/4 * 1/3 [x^3]_0^4`
= `4/3 [(4)^(3/2) - 0] - 1/12 [(4)^3 - 0]`
= `4/3 [8] - 1/12[64]`
= `32/2 - 16/3`
= `16/3` sq.units
Hence, the required area = `16/3` sq.units
APPEARS IN
संबंधित प्रश्न
Find the area bounded by the curve y = sin x between x = 0 and x = 2π.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.
Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.
Find the area, lying above x-axis and included between the circle x2 + y2 = 8x and the parabola y2 = 4x.
Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0.
Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.
Find the area bounded by the curves x = y2 and x = 3 − 2y2.
Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.
Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.
The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)
The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .
Find the area of region bounded by the line x = 2 and the parabola y2 = 8x
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.
Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.
The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.
The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`
The curve x = t2 + t + 1,y = t2 – t + 1 represents
If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then
The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is
Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.
Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.
Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.
Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.