Advertisements
Advertisements
प्रश्न
Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.
उत्तर
\[\text{ Let R }= \left\{ \left( x, y \right): x^2 + y^2 \leq 4 , x + y \geq 2 \right\}\]
\[ R_1 = \left\{ \left( x, y \right): x^2 + y^2 \leq 4 \right\}\]
\[ R_2 = \left\{ \left( x, y \right): x + y \geq 2 \right\}\]
\[ \therefore R = R_1 \cap R_2\]
The region R1 represents interior of the circle x2 + y2 = 4 with centre (0, 0) and has a radius 2.
The region R2 lies above the line x + y =2
The line x + y =2 and circle x2 + y2 = 4 intersect each other at (2, 0) and (0, 2).
Here, the length of the shaded region is given by
Therefore the area,
\[A = \int_0^2 \left( y_2 - y_1 \right) d x\]
\[ = \int_0^2 \left[ \sqrt{4 - x^2} - \left( 2 - x \right) \right] d x\]
\[ = \left[ \frac{1}{2}x\sqrt{4 - x^2} + \frac{4}{2} \sin^{- 1} \left( \frac{x}{2} \right) \right]_0^2 - \left[ 2x - \frac{x^2}{2} \right]_0^2 \]
\[ = \left[ \frac{2}{2}\sqrt{4 - 2^2} + \frac{4}{2} \sin^{- 1} \left( \frac{2}{2} \right) - \frac{0}{2}\sqrt{4 - 0^2} - \frac{4}{2} \sin^{- 1} \left( \frac{0}{2} \right) \right] - \left[ 2\left( 2 \right) - \frac{2^2}{2} - 2\left( 0 \right) + \frac{0^2}{2} \right]\]
\[ = \left[ 0 + 2 \sin^{- 1} \left( 1 \right) - 0 - 0 \right] - \left[ 4 - 2 - 0 + 0 \right]\]
\[ = 2 \sin^{- 1} \left( 1 \right) - 2\]
\[ = 2 \times \frac{\pi}{2} - 2\]
\[ = \pi - 2\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.
Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.
Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.
Find the area of the region included between the parabola y2 = x and the line x + y = 2.
Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.
Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.
Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.
Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
The area bounded by y = 2 − x2 and x + y = 0 is _________ .
The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .
The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.
Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.
Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0
Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`
Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.
Find the area of the region bounded by the curves y2 = 9x, y = 3x
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
Find the area bounded by the curve y = sinx between x = 0 and x = 2π.
The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.
The area of the region bounded by the circle x2 + y2 = 1 is ______.
The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.
If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then
The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is
Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.
Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`
Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.
Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.
Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.
Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.