Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.
उत्तर
The curve\[y = \sqrt{x}\] or \[y^2 = x\] represents a parabola opening towards the positive x-axis.
The curve y = x represents a line passing through the origin.
Solving \[y^2 = x\] and y = x, we get \[x^2 = x\]
\[ \Rightarrow x^2 - x = 0\]
\[ \Rightarrow x\left( x - 1 \right) = 0\]
\[ \Rightarrow x = 0\text{ or }x = 1\]
Thus, the given curves intersect at O(0, 0) and A(1, 1).
∴ Required area = Area of the shaded region OAO
\[= \int_0^1 y_{\text{ parabola }} dx - \int_0^1 y_{\text{ line }} dx\]
\[ = \int_0^1 \sqrt{x}dx - \int_0^1 xdx\]
\[ = \left.\frac{x^\frac{3}{2}}{\frac{3}{2}}\right|_0^1 - \left.\frac{x^2}{2}\right|_0^1 \]
\[ = \frac{2}{3}\left( 1 - 0 \right) - \frac{1}{2}\left( 1 - 0 \right)\]
\[ = \frac{2}{3} - \frac{1}{2}\]
\[ = \frac{1}{6}\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
Find the area bounded by the curve y2 = 4ax, x-axis and the lines x = 0 and x = a.
triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.
Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x
Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.
Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.
Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.
Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\] and evaluate the area of the region under the curve and above the x-axis.
Determine the area under the curve y = \[\sqrt{a^2 - x^2}\] included between the lines x = 0 and x = a.
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.
Find the area enclosed by the curve x = 3cost, y = 2sin t.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.
Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\] in the first quadrant and x-axis.
Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.
Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.
Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .
The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .
The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .
The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .
Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.
Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.
The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2
The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.
Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.
Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.
For real number a, b (a > b > 0),
let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π
Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.
Then the value of (a – b)2 is equal to ______.
The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.
Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.
Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.
Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.