Advertisements
Advertisements
प्रश्न
Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is
विकल्प
2
- \[\frac{9}{4}\]
- \[\frac{9}{3}\]
- \[\frac{9}{2}\]
उत्तर
\[\frac{9}{4}\]
y2 = 4x represents a parabola with vertex at origin O(0, 0) and symmetric about +ve x-axis
y = 3 is a straight line parallel to the x-axis
Point of intersection of the line and the parabola is given by
Substituting y = 3 in the equation of the parabola
\[y^2 = 4x\]
\[ \Rightarrow 3^2 = 4x\]
\[ \Rightarrow x = \frac{9}{4}\]
\[\text{ Thus A }\left( \frac{9}{4} , 3 \right)\text{ is the point of intersection of the parabola and straight line }.\]
Required area is the shaded area OABO
Using the horizontal strip method ,
\[\text{ Area }\left( OABO \right) = \int_0^3 \left| x \right| dy\]
\[ = \int_0^3 \frac{y^2}{4} dy\]
\[ = \left[ \frac{1}{4}\left( \frac{y^3}{3} \right) \right]_0^3 \]
\[ = \frac{3^3}{12}\]
\[ = \frac{9}{4}\text{ sq . units }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4
Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.
Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.
Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\] and evaluate the area of the region under the curve and above the x-axis.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.
Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.
Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]
Find the area enclosed by the curve x = 3cost, y = 2sin t.
Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.
Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]
Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.
Find the area of the region bounded by y = | x − 1 | and y = 1.
Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.
The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .
The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .
Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.
Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity.
Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x
Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0
Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.
The area enclosed by the circle x2 + y2 = 2 is equal to ______.
The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.
Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0
Find the area of the region included between y2 = 9x and y = x
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Find the area of the region bounded by y = `sqrt(x)` and y = x.
Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.
Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π
The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.
The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.
The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.
Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.
Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.
Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.