मराठी

Area of the Region Bounded by the Curve Y2 = 4x, Y-axis and the Line Y = 3, is - Mathematics

Advertisements
Advertisements

प्रश्न

Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is

पर्याय

  • 2

  • \[\frac{9}{4}\]
  • \[\frac{9}{3}\]
  • \[\frac{9}{2}\]
MCQ

उत्तर

\[\frac{9}{4}\]

y2 = 4x represents a parabola  with vertex at origin O(0, 0) and symmetric about +ve x-axis
y = 3 is a straight line parallel to the x-axis
Point of intersection of the line and the parabola is given by
Substituting y = 3  in the equation of the parabola
\[y^2 = 4x\]
\[ \Rightarrow 3^2 = 4x\]
\[ \Rightarrow x = \frac{9}{4}\]
\[\text{ Thus A }\left( \frac{9}{4} , 3 \right)\text{ is the point of intersection of the parabola and straight line }.\]
Required area is the shaded area OABO
Using the horizontal strip method ,
\[\text{ Area }\left( OABO \right) = \int_0^3 \left| x \right| dy\]
\[ = \int_0^3 \frac{y^2}{4} dy\]
\[ = \left[ \frac{1}{4}\left( \frac{y^3}{3} \right) \right]_0^3 \]
\[ = \frac{3^3}{12}\]
\[ = \frac{9}{4}\text{ sq . units }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - MCQ [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
MCQ | Q 33 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.


Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).


Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.


Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 


Determine the area under the curve y = \[\sqrt{a^2 - x^2}\]  included between the lines x = 0 and x = a.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.


Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


The area bounded by the curve y = 4x − x2 and the x-axis is __________ .


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Evaluate:

`int_0^1x^2dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×