मराठी

Evaluate: ∫01x2dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:

`int_0^1x^2dx`

बेरीज

उत्तर

`int_0^1x^2dx = [x^3/3]_0^1`

= `1/3`

∴ Area of the shaded region = `2int_0^1x^2dx`

= `2/3` sq.units.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (April) Specimen Paper

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.


Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.


Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.


Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.


Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.


Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2


The area bounded by the curve y = 4x − x2 and the x-axis is __________ .


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


Find the area of the region included between y2 = 9x and y = x


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.


Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.


Find the area bounded by the curve y = |x – 1| and y = 1, using integration.


For real number a, b (a > b > 0),

let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π

Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.

Then the value of (a – b)2 is equal to ______.


Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×