मराठी

Find the area bounded by the curve y = x, x = 2y + 3 in the first quadrant and x-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.

बेरीज

उत्तर


Given that: y = `sqrt(x)`, x = 2y + 3, first quadrant and x-axis.

Solving y = `sqrt(x)` and x = 2y + 3

We get y = `sqrt(2y + 3)`

⇒ y2 = 2y + 3

⇒ y2 – 2y – 3 = 0

⇒ y2 – 3y + y – 3 = 0

⇒ y(y – 3) + 1(y – 3) = 0

⇒ (y + 1)(y – 3) = 0

∴ y = –1, 3

Area of shaded region

= `int_0^3 (2y + 3) "d"y - int_0^3 "y"^2  "d"y`

= `[2 y^2/2 + 3y]_0^3 - 1/3 [y^3]_0^3`

= `[(9 + 9) - (0 + 0)] - 1/3[27 - 0]`

= 18 – 9

= 9 sq.units

Hence, the required area = 9 sq.units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application Of Integrals - Exercise [पृष्ठ १७७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 8 Application Of Integrals
Exercise | Q 15 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.


Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.


Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.


Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.


If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m. 

 


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.


Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is 


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.


Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.


Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.


Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).


Evaluate:

`int_0^1x^2dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×