Advertisements
Advertisements
प्रश्न
The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .
पर्याय
\[\frac{8 a^3}{3}\]
\[\frac{16 a^2}{3}\]
\[\frac{32 a^2}{3}\]
\[\frac{64 a^2}{3}\]
उत्तर

To find the point of intersection of the parabolas substitute \[y = \frac{x^2}{4a}\] in \[y^2 = 4ax\] we get
\[\frac{x^4}{16 a^2} = 4ax\]
\[ \Rightarrow x^4 - 64 a^3 x = 0\]
\[ \Rightarrow x\left( x^3 - 64 a^3 \right) = 0\]
\[ \Rightarrow x = 0\text{ or }x = 4a\]
\[ \Rightarrow y = 0 \text{ or }y = 4a\]
Therefore, the required area ABCD,
\[A = \int_0^{4a} \left( y_1 - y_2 \right) d x ...........\left(\text{Where, }y_1 = 2\sqrt{ax}\text{ and }y_2 = \frac{x^2}{4a} \right)\]
\[ = \int_0^{4a} \left( 2\sqrt{ax} - \frac{x^2}{4a} \right) d x\]
\[ = \left[ \frac{4\sqrt{a}}{3} x^\frac{3}{2} - \frac{x^3}{12a} \right]_0^{4a} \]
\[ = \left[ \frac{4\sqrt{a}}{3} \left( 4a \right)^\frac{3}{2} - \frac{\left( 4a \right)^3}{12a} \right] - \left[ \frac{4\sqrt{a}}{3} \left( 0 \right)^\frac{3}{2} - \frac{\left( 0 \right)^3}{12a} \right]\]
\[ = \left[ \frac{4\sqrt{a}}{3}8 a^\frac{3}{2} - \frac{64 a^3}{12a} \right] - 0\]
\[ = \frac{32 a^2}{3} - \frac{16 a^2}{3}\]
\[ = \frac{16 a^2}{3}\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\] and evaluate the area of the region under the curve and above the x-axis.
Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.
Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.
Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.
Find the area of the region bounded by x2 = 4ay and its latusrectum.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.
Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.
Find the area, lying above x-axis and included between the circle x2 + y2 = 8x and the parabola y2 = 4x.
Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.
Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.
Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.
Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.
In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.
The area bounded by y = 2 − x2 and x + y = 0 is _________ .
The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .
The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .
The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .
The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .
The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .
The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.
Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.
Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0
Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.
Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.
The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.
The curve x = t2 + t + 1,y = t2 – t + 1 represents
Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.
Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.
The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.
Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.