Advertisements
Advertisements
प्रश्न
The area bounded by y = 2 − x2 and x + y = 0 is _________ .
पर्याय
\[\frac{7}{2}\] sq. units
\[\frac{9}{2}\] sq. units
9 sq. units
none of these
उत्तर

To find the points of intersection of x + y = 0 and y = 2 − x2.
We put x = − y in y = 2 − x2, we get \[y = 2 - y^2 \]
\[ \Rightarrow y^2 + y - 2 = 0\]
\[ \Rightarrow \left( y - 1 \right)\left( y + 2 \right) = 0\]
\[ \Rightarrow y = 1, - 2\]
Therefore, the points of intersection are A(−1, 1) and C(2, −2).
The area of the required region ABCD,
\[A = \int_{- 1}^2 \left( y_1 - y_2 \right) d x ...........\left(\text{Where, }y_1 = 2 - x^2\text{ and }y_2 = - x \right)\]
\[ = \int_{- 1}^2 \left( 2 - x^2 + x \right) d x\]
\[ = \left[ 2x - \frac{x^3}{3} + \frac{x^2}{2} \right]_{- 1}^2 \]
\[ = \left\{ 2\left( 2 \right) - \frac{\left( 2 \right)^3}{3} + \frac{\left( 2 \right)^2}{2} \right\} - \left\{ 2\left( - 1 \right) - \frac{\left( - 1 \right)^3}{3} + \frac{\left( - 1 \right)^2}{2} \right\}\]
\[ = \left( 4 - \frac{8}{3} + 2 \right) - \left( - 2 + \frac{1}{3} + \frac{1}{2} \right)\]
\[ = 6 - \frac{8}{3} + 2 - \frac{1}{3} - \frac{1}{2}\]
\[ = 8 - \frac{9}{3} - \frac{1}{2}\]
\[ = 5 - \frac{1}{2}\]
\[ = \frac{9}{2}\text{ square units }.\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.
Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\] and evaluate the area of the region under the curve and above the x-axis.
Determine the area under the curve y = \[\sqrt{a^2 - x^2}\] included between the lines x = 0 and x = a.
Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?
Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.
Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\] in the first quadrant and x-axis.
Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0.
Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.
Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.
Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).
Find the area of the region bounded by y = | x − 1 | and y = 1.
Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.
Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.
Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.
Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.
The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .
Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is
Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity.
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.
Find the area bounded by the curve y = sinx between x = 0 and x = 2π.
Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.
The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.
The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.
The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.
The area of the region bounded by the line y = 4 and the curve y = x2 is ______.
Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.
Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.
The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.
For real number a, b (a > b > 0),
let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π
Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.
Then the value of (a – b)2 is equal to ______.
The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.
Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.
Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.