मराठी

The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.

पर्याय

  • `3/8` sq.units

  • `5/8` sq.units

  • `7/8` sq.units

  • `9/8` sq.units

MCQ
रिकाम्या जागा भरा

उत्तर

The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is `9/8` sq.units.

Explanation:

Given that: The equation of parabola is x2 = 4y  .....(i)

And equation of straight line is x = 4y – 2  .....(ii)

Solving equation (i) and (ii)

We get y = `x^2/4`

x = `4(x^2/4) - 2`

⇒ x = x2 – 2

⇒ x2 – x – 2 = 0

⇒ x2 – 2x + x – 2 = 0

⇒ x(x – 2) + 1(x – 2) = 0

⇒ (x – 2)(x + 1) = 0

∴ x = –1, x = 2

Required area = `int_(-1)^2 (x + 2)/4 "d"x - int_(-1)^2  x^2/4  "d"x`

= `1/4  [x^2/2 + 2x]_-1^2 - 1/4 * 1/3 [x^3]_1^2`

= `1/4 [(4/2 + 4) - (1/2 - 2)] - 1/12[8 + 1]`

= `1/4 [6 + 3/2] - 1/12 [9]`

= `1/4 xx 15/2 - 3/4`

= `15/8 - 3/4`

= `9/8` sq.units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application Of Integrals - Exercise [पृष्ठ १७७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 8 Application Of Integrals
Exercise | Q 25 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.


Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0


Find the area bounded by the curve y = sinx between x = 0 and x = 2π.


Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.


Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is


Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.


Find the area bounded by the curve y = |x – 1| and y = 1, using integration.


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Evaluate:

`int_0^1x^2dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×