Advertisements
Advertisements
प्रश्न
The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.
पर्याय
`3/8` sq.units
`5/8` sq.units
`7/8` sq.units
`9/8` sq.units
उत्तर
The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is `9/8` sq.units.
Explanation:
Given that: The equation of parabola is x2 = 4y .....(i)
And equation of straight line is x = 4y – 2 .....(ii)
Solving equation (i) and (ii)
We get y = `x^2/4`
x = `4(x^2/4) - 2`
⇒ x = x2 – 2
⇒ x2 – x – 2 = 0
⇒ x2 – 2x + x – 2 = 0
⇒ x(x – 2) + 1(x – 2) = 0
⇒ (x – 2)(x + 1) = 0
∴ x = –1, x = 2
Required area = `int_(-1)^2 (x + 2)/4 "d"x - int_(-1)^2 x^2/4 "d"x`
= `1/4 [x^2/2 + 2x]_-1^2 - 1/4 * 1/3 [x^3]_1^2`
= `1/4 [(4/2 + 4) - (1/2 - 2)] - 1/12[8 + 1]`
= `1/4 [6 + 3/2] - 1/12 [9]`
= `1/4 xx 15/2 - 3/4`
= `15/8 - 3/4`
= `9/8` sq.units
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.
Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\] and evaluate the area of the region under the curve and above the x-axis.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.
Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.
Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.
Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.
Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.
Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.
Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.
The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2
Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0
Find the area bounded by the curve y = sinx between x = 0 and x = 2π.
Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.
Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is
Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.
Find the area bounded by the curve y = |x – 1| and y = 1, using integration.
Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.
Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.
Evaluate:
`int_0^1x^2dx`