मराठी

Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration. - Mathematics

Advertisements
Advertisements

प्रश्न

Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.

बेरीज

उत्तर


The points of intersection of the parabola y = x2 and the line y = x are (0, 0) and (1, 1).

Required Area = `int_0^1 y_(parabola) dx + int_1^2 y_"line"dx`

Required Area = `int_0^1 x^2 dx + int_1^2 x  dx`

= `[x^3/3]_0^1 + [x^2/2]_1^2`

= `1/3 + 3/2`

= `11/6`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Sample

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area bounded by the curve y2 = 4axx-axis and the lines x = 0 and x = a.


Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.


Find the area of the region included between the parabola y2 = x and the line x + y = 2.


Find the area of the region bounded by y = | x − 1 | and y = 1.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.


The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.


Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.


Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`


Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is


The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is 


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Evaluate:

`int_0^1x^2dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×