Advertisements
Advertisements
प्रश्न
Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.
उत्तर
We have,
\[y = \left| x - 1 \right|\]
\[ \Rightarrow y = \begin{cases}x - 1&\text{ for }x \geq 1\\1 - x &\text{ for } x < 1\end{cases}\]
y = x − 1 is a straight line passing through A(1, 0)
y = 1 − x is straight line passing through A(1, 0) and cutting y-axis at B(0, 1)
\[y = 3 - \left| x \right|\]
\[ \Rightarrow y = \begin{cases}3 - x&\text{ for }x \geq o\\3 - \left( - x \right) = 3 + x&\text{ for }x < 0\end{cases}\]
y = 3 − x is straight line passing through C(0, 3) and D(3, 0)
y = 3 + x is a straight line passing through C(0, 3) and D'(−3, 0)
The point of intersection is obtained by solving the simultaneous equations
\[y = x - 1\]
\[\text{ and }y = 3 - x\]
We get
\[ \Rightarrow x - 1 = 3 - x\]
\[ \Rightarrow 2x - 4 = 0\]
\[ \Rightarrow x = 2\]
\[ \Rightarrow y = 2 - 1 = 1\]
\[\text{ Thus P }\left( 2, 1 \right)\text{ is point of intersection of }y = x - 1\text{ and }y = 3 - x\]
Point of intersection for
\[y = 1 - x\]
\[y = 3 + x\]
\[ \Rightarrow 1 - x = 3 + x\]
\[ \Rightarrow 2x = - 2\]
\[ \Rightarrow x = - 1\]
\[ \Rightarrow y = 1 - \left( - 1 \right) = 2\]
\[\text{ Thus Q }\left( - 1, 2 \right)\text{ is point of intersection of }y = 1 - x\text{ and }y = 3 + x\]
\[\text{ Since the character of function changes at C }\left( 0, 3 \right)\text{ and A }(1, 0) ,\text{ draw AM perpendicular to }x - \text{ axis }\]
\[\text{ Required area = Shaded area }\left( QCPAQ \right)\]
\[ =\text{ Area }\left( QCB \right) +\text{ Area }\left( BCMAB \right) +\text{ area }\left( AMPA \right) . . . . . \left( 1 \right)\]
\[\text{ Area }\left( QCB \right) = \int_{- 1}^0 \left[ \left( 3 + x \right) - \left( 1 - x \right) \right]dx\]
\[ = \int_{- 1}^0 \left( 2 + 2x \right) dx\]
\[ = \left[ 2x + x^2 \right]_{- 1}^0 \]
\[ = 0 - \left( - 2 + 1 \right)\]
\[ = 1\text{ sq unit }. . . . . \left( 2 \right)\]
\[\text{ Area }\left( BCMA \right) = \int_0^1 \left[ \left( 3 - x \right) - \left( 1 - x \right) \right] dx\]
\[ = \int_0^1 2 dx \]
\[ = \left[ 2x \right]_0^1 = 2\text{ sq unit }. . . . . \left( 3 \right)\]
\[\text{ Area }\left( AMPA \right) = \int_1^2 \left[ \left( 3 - x \right) - \left( x - 1 \right) \right] dx\]
\[ = \int_1^2 \left( 4 - 2x \right) dx\]
\[ = \left[ 4x - x^2 \right]_1^2 \]
\[ = \left( 8 - 4 \right) - \left( 4 - 1 \right)\]
\[ = 1\text{ sq unit }. . . . . \left( 4 \right)\]
\[\text{ From }\left( 1 \right), \left( 2 \right), \left( 3 \right) \text{ and }\left( 4 \right)\]
\[\text{ Shaded area }= 1 + 2 + 1 = 4\text{ sq units }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.
Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3y + 5 = 0
Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.
Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?
Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.
Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.
Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.
Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.
Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.
Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.
Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.
Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0.
Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
The area bounded by y = 2 − x2 and x + y = 0 is _________ .
The area bounded by the curve y = 4x − x2 and the x-axis is __________ .
Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`
Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.
The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.
Find the area of the region bounded by the curves y2 = 9x, y = 3x
Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.
Find the area of the region included between y2 = 9x and y = x
Find the area of region bounded by the line x = 2 and the parabola y2 = 8x
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.
Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.
Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.
The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.
The area of the region bounded by the line y = 4 and the curve y = x2 is ______.
Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.
Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.
Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.
Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.
Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.