मराठी

Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.

पर्याय

  • 2 sq.units

  • 4 sq.units

  • 3 sq.units

  • 1 sq.units

MCQ
रिकाम्या जागा भरा

उत्तर

Area of the region bounded by the curve y = cosx between x = 0 and x = π is 2 sq.units.

Explanation:


Given that: y = cos x, x = 0, x = π

Required area = `int_0^(pi/2) cos x  "d"x + |int_(pi/2)^pi cos x  "d"x|`

= `[sin x]_0^(pi/2) + |(sin x)_(pi/2)^pi|`

= `[sin  pi/2 - sin 0] + |[sin pi - sin  pi/2]|`

= `(1 - 0) + |0 - 1|`

= 1 + 1

= 2 sq.units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application Of Integrals - Exercise [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 8 Application Of Integrals
Exercise | Q 28 | पृष्ठ १७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Find the area, lying above x-axis and included between the circle x2 + y2 = 8x and the parabola y2 = 4x.


Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.


Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.


Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.


If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m. 

 


Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.


Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.


Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.


The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.


The curve x = t2 + t + 1,y = t2 – t + 1 represents


The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×