Advertisements
Advertisements
प्रश्न
Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.
उत्तर
Points of intersection of the parabola and the circle is obtained by solving the simultaneous equations
\[x^2 + y^2 = 16\text{ and }y^2 = 6x\]
\[ \Rightarrow x^2 + 6x = 16 \]
\[ \Rightarrow x^2 + 6x - 16 = 0\]
\[ \Rightarrow \left( x + 8 \right)\left( x - 2 \right) = 0\]
\[ \Rightarrow x = 2\text{ or }x = - 8 ,\text{ which is not the possible solution . }\]
\[ \therefore\text{ When }x = 2, y = \pm \sqrt{6 \times 2} = \pm \sqrt{12} = \pm 2\sqrt{3}\]
\[ \therefore\text{ B }\left( 2 , 2\sqrt{3} \right)\text{ and B' }\left( 2 , - 2\sqrt{3} \right)\text{ are points of intersection of the parabola and circle . }\]
\[\text{ Required area = Area }\left( OB'C'A'CBO \right) =\text{ area of circle - area }\left( OBAB'O \right) \]
\[\text{ Area of circle with radius }4 = \pi \times 4^2 = 16\pi \]
Now,
\[\text{ Area OBAB'O = 2area }\left( OBAO \right)\]
\[ = 2\left\{\text{ area }\left( OBDO \right) +\text{ area }\left( DBAD \right) \right\}\]
\[ = 2 \times \left[ \int_0^2 \sqrt{6x}dx + \int_2^4 \sqrt{16 - x^2} dx \right]\]
\[ = 2 \times \left\{ \left[ \sqrt{6}\frac{x^\frac{3}{2}}{\frac{3}{2}} \right]_0^2 + \left[ \frac{1}{2}x\sqrt{16 - x^2} + \frac{1}{2} \times 16 \sin^{- 1} \left( \frac{x}{a} \right) \right]_2^4 \right\}\]
\[ = 2 \times \left\{ \left( \sqrt{6} \times \frac{2}{3} \times 2^\frac{3}{2} - 0 \right) + \left( \frac{1}{2}4\sqrt{16 - \left( 4 \right)^2} + \frac{1}{2} \times 16 \sin^{- 1} \frac{4}{4} - \frac{1}{2} \times 2\sqrt{16 - 2^2} - \frac{1}{2} \times 16 \sin^{- 1} \frac{2}{4} \right) \right\}\]
\[ = 2 \times \left\{ \left( \sqrt{6} \times \frac{2}{3} \times 2\sqrt{2} \right) + 0 + 8 \sin^{- 1} \left( 1 \right) - \sqrt{12} - 8 \sin^{- 1} \left( \frac{1}{2} \right) \right\}\]
\[ = 2 \times \left[ \frac{8\sqrt{3}}{3} + 8 \times \frac{\pi}{2} - 2\sqrt{3} - 8\frac{\pi}{6} \right]\]
\[ = 2 \left\{ \frac{8\sqrt{3} - 6\sqrt{3}}{3} + 8\left( \frac{\pi}{2} - \frac{\pi}{6} \right) \right\}\]
\[ = 2\left\{ \frac{2\sqrt{3}}{3} + 8\left( \frac{2\pi}{6} \right) \right\}\]
\[ = \frac{4\sqrt{3}}{3} + \frac{16\pi}{3}\]
\[\text{ Shaded area }= 16\pi - \left( \frac{4\sqrt{3}}{3} + \frac{16\pi}{3} \right)\]
\[ = \frac{48\pi - 16\pi}{3} - \frac{4\sqrt{3}}{3}\]
\[ = \frac{32\pi}{3} - \frac{4\sqrt{3}}{3}\]
\[ = \frac{4}{3}\left( 8\pi - \sqrt{3} \right)\text{ sq units }\]
APPEARS IN
संबंधित प्रश्न
Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).
Find the area bounded by the curve y = sin x between x = 0 and x = 2π.
Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3y + 5 = 0
Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.
Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.
Find the area enclosed by the curve x = 3cost, y = 2sin t.
Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.
Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]
Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.
Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.
Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0.
Find the area bounded by the curves x = y2 and x = 3 − 2y2.
Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.
Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.
Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.
The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .
The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .
Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0
Find the area of the curve y = sin x between 0 and π.
The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.
Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.
Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`
The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is
Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.
Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`
The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1
The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0 ≤ x - (<pi)/2` is
Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.
Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.
Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.
Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.
Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.
Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.
Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.