Advertisements
Advertisements
प्रश्न
Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.
उत्तर
We have, two parabolas y = 2x2 and y = x2 + 4
To find point of intersection , solve the two equations
\[2 x^2 = x^2 + 4\]
\[ \Rightarrow x^2 = 4\]
\[ \Rightarrow x = \pm 2\]
\[ \therefore y = 4\]
\[\text{ Thus A }(2, 4)\text{ and A'}( - 2 , 4 )\text{ are points of intersection of the two parabolas }\]
\[\text{ Shaded area }= 2 \times\text{ area }\left(\text{ OCAO }\right)\]
\[\text{ Consider a vertical stip of length }\left| y_2 - y_1 \right| \text{ and width }dx \]
\[\text{ Area of approximating rectangle }= \left| y_2 - y_1 \right| dx \]
\[\text{ The approximating rectangle moves from }x = 0\text{ to } x = 2\]
\[\text{ Area }\left( OCAO \right) = \int_0^2 \left| y_2 - y_1 \right|dx = \int_0^2 \left( y_2 - y_1 \right)dx .............\left\{ \because \left| y_2 - y_1 \right| = y_2 - y_1\text{ as }y_2 > y_1 \right\}\]
\[ = \int_0^2 \left( x^2 + 4 - 2 x^2 \right)dx\]
\[ = \int_0^2 \left( 4 - x^2 \right)dx\]
\[ = \left[ \left( 4x - \frac{x^3}{3} \right) \right]_0^2 \]
\[ = 8 - \frac{8}{2}\]
\[ = \frac{16}{3}\text{ sq units }\]
\[\text{ Shaded area }= 2 \times\text{ area }\left( OCAO \right) = 2 \times \frac{16}{3} = \frac{32}{3}\text{ sq units }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.
The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.
[Hint: y = x2 if x > 0 and y = –x2 if x < 0]
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.
Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.
Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.
Using definite integrals, find the area of the circle x2 + y2 = a2.
Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?
Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.
Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]
Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.
Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.
Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.
Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.
If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is
Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is
Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is
Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.
Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity.
Using integration, find the area of the region bounded by the parabola y2 = 4x and the circle 4x2 + 4y2 = 9.
Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`
Find the area of the region included between y2 = 9x and y = x
Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π
The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.
Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.
The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is
Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.
The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1
Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.
The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.
Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.
Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.
Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.