मराठी

Using Definite Integrals, Find the Area of the Circle X2 + Y2 = A2. - Mathematics

Advertisements
Advertisements

प्रश्न

Using definite integrals, find the area of the circle x2 + y2 = a2.

बेरीज

उत्तर

Area of the circle x2 + y2 = a2 will be the 4 times the area enclosed between x = 0 and x = a in the first quadrant which is shaded.

\[A = 4 \int_0^a \left| y \right| d x\]
\[ = 4 \int_0^a \left( \sqrt{a^2 - x^2} \right) d x\]
\[ = 4 \left[ \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} \right]_0^a \]
\[ = 4\left[ 0 + \frac{1}{2} a^2 \sin^{- 1} 1 \right]\]
\[ = 4\left[ \frac{1}{2} a^2 \frac{\pi}{2} \right] ................\left( \because \sin^{- 1} 1 = \frac{\pi}{2} \right)\]
\[ = a^2 \pi\text{ sq units }\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.1 | Q 15 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.


Find the area bounded by the curve y = sin x between x = 0 and x = 2π.


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]


Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Find the area of the region bounded by y = | x − 1 | and y = 1.


Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.


The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by


The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.


Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.


Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.


The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.


Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =


Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.


Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×