Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by y = | x − 1 | and y = 1.
उत्तर
We have,
\[y = \left| x - 1 \right|\]
\[ \Rightarrow y = \begin{cases}x - 1& x \geq 1\\1 - x& x < 1\end{cases}\]
y = x − 1 is a straight line originating from A(1, 0) and making an angle 45o with the x-axis
y = 1 − x is a straight line originating from A(1, 0) and making an angle 135o with the x-axis
y = x is a straight line parallel to x-axis and passing through B(0, 1)
The point of intersection of two lines with y = 1 is obtained by solving the simultaneous equations
\[y = 1\]
\[\text{ and }y = x - 1 \]
\[ \Rightarrow 1 = x - 1\]
\[ \Rightarrow x - 2 = 0\]
\[ \Rightarrow x = 2\]
\[ \Rightarrow C\left( 2, 1 \right)\text{ is point of intersection of }y = x - 1\text{ and }y = 1\]
\[y = 1\text{ and }y = 1 - x\]
\[ \Rightarrow 1 = 1 - x\]
\[ \Rightarrow x = 0\]
\[ \Rightarrow B\left( 0, 1 \right)\text{ is point of intersection of }y = 1 - x\text{ and }y = 1\]
\[\text{ Since }y = \left| x - 1 \right|\text{ changes character at A }(1, 0) ,\text{ Consider point P }(1, 1)\text{ on BC such that PA is perpendicular to }x -\text{ axis }. \]
\[\text{ Required shaded area }\left( ABCA \right) =\text{ area }\left( ABPA \right) + \text{ area }\left( PCAP \right)\]
\[ = \int_0^1 \left[ 1 - \left( 1 - x \right) \right]dx + \int_1^2 \left[ 1 - \left( x - 1 \right) \right]dx\]
\[ = \int_0^1 x dx + \int_1^2 \left( 2 - x \right) dx\]
\[ = \left[ \frac{x^2}{2} \right]_0^1 + \left[ 2x - \frac{x^2}{2} \right]_1^2 \]
\[ = \frac{1}{2} + \left[ 4 - 2 - 2 + \frac{1}{2} \right]\]
\[ = \frac{1}{2} + \frac{1}{2} = 1\text{ sq . unit }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.
Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.
Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.
Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?
Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.
Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).
Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.
Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.
Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.
Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.
Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.
In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)
The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .
The area bounded by the curve y = 4x − x2 and the x-axis is __________ .
The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is
The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .
The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by
The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .
Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
The area enclosed by the circle x2 + y2 = 2 is equal to ______.
The area of the region bounded by the curve y = x2 and the line y = 16 ______.
The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2
Find the area of region bounded by the line x = 2 and the parabola y2 = 8x
Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.
Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.
Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`
The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1
The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0 ≤ x - (<pi)/2` is
Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.
Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.
Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.
Evaluate:
`int_0^1x^2dx`