Advertisements
Advertisements
प्रश्न
The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is
पर्याय
1
2/3
4/3
8/3
उत्तर
2/3
Point of intersection of the parabola x2 = 4y and straight line x = 2 is given by
\[x^2 = 4y\text{ and }x = 2\]
\[ \Rightarrow 4 = 4y\]
\[ \Rightarrow y = 1\]
\[A\left( 2, 1 \right)\text{ is the point of intersection of the curve and straight line }\]
\[\text{ Area of shaded region OAB }= \int_0^2 y dx\]
\[ = \int_0^2 \frac{x^2}{4} dx \]
\[ = \left[ \frac{x^3}{12} \right]_0^2 \]
\[ = \frac{2^3}{12} - 0\]
\[ = \frac{2}{3}\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
Find the area bounded by the curve y2 = 4ax, x-axis and the lines x = 0 and x = a.
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.
Find the area bounded by the curve y = sin x between x = 0 and x = 2π.
Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.
Sketch the graph of y = \[\sqrt{x + 1}\] in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.
Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.
Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.
Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.
Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.
Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.
Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.
In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .
The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .
The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by
The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is
Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.
Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.
Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0
Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.
Find the area of the region bounded by y = `sqrt(x)` and y = x.
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.
Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.
Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:
Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.
What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.
For real number a, b (a > b > 0),
let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π
Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.
Then the value of (a – b)2 is equal to ______.
Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.
The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.
Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.
The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.
Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.
Evaluate:
`int_0^1x^2dx`