मराठी

Area Enclosed Between the Curve Y2 (2a − X) = X3 and the Line X = 2a Above X-axis is - Mathematics

Advertisements
Advertisements

प्रश्न

Area enclosed between the curve y2 (2a − x) = x3 and the line x = 2a above x-axis is ___________ .

पर्याय

  • πa2

  • \[\frac{3}{2}\pi a^2\]

  • 2πa2

  • 3πa2

MCQ

उत्तर

\[\frac{3}{2}\pi a^2\]

 


\[\begin{array}{l}y^2 \left( 2a -x \right) = x^3 \\ y = \sqrt{\frac{x^3}{2a - x}}\end{array}\]
Let x = 2a sin2θ
    dx = 4a sinθ cosθ dθ
\[\begin{array}{l}\text{ Area }= \hspace{0.167em} \int\limits_0^{2a} \sqrt{\frac{x^3}{2a - x}}dx \\ = \int_0^\frac{\pi}{2} \sqrt{\frac{\left( 8 a^3 \right) \sin^6 \theta}{\left( 2a \right)\hspace{0.167em} \cos^2 \theta}}\hspace{0.167em} \cdot \left( 4a \right)\hspace{0.167em}\sin\theta\hspace{0.167em}\cos\theta\hspace{0.167em}d\theta \\ = 8 a^2 \int_0^\frac{\pi}{2} \sqrt{\sin^6 \theta}\hspace{0.167em}\sin\theta\hspace{0.167em}d\theta \\ = 8 a^2 \left[ \int_0^\frac{\pi}{2} \sin^4 \theta\hspace{0.167em}d\theta \right] \\ = 8 a^2 \left[ \int_0^\frac{\pi}{2} \sin^2 \theta\left( 1- \cos^2 \theta \right)\hspace{0.167em}d\theta \right] \\ = 8 a^2 \left[ \int_0^\frac{\pi}{2} \left( \frac{1 - \cos2\theta}{2} \right) d\theta - \frac{1}{4} \int_0^\frac{\pi}{2} \sin^2  2\theta \text{ d}\theta \right] \\ = 8 a^2 \left[ \frac{1}{2} \left[ \theta \right]_0^\frac{\pi}{2} - \left[ \frac{\sin2\theta}{4} \right]_0^\frac{\pi}{2} \right] - \frac{1}{4}\left[ \int_0^\frac{\pi}{2} \frac{1 - \cos 4\theta}{2}d\theta \right] \\ = 8 a^2 \left[ \left( \frac{\pi}{4} \right) - 0 \right] - \frac{1}{4}\left[ \frac{\pi}{4} - 0 \right] \\ = 8 a^2 \left[ \frac{\pi}{4} - \frac{\pi}{16} \right] = \frac{3}{2}\pi a^2\end{array}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - MCQ [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
MCQ | Q 21 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).


Find the area of the region lying between the parabolas y2 = 4ax and x2 = 4ay.


Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y


Using integration find the area of the triangular region whose sides have the equations y = 2x +1, y = 3x + 1 and = 4.


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is

A. 2 (π – 2)

B. π – 2

C. 2π – 1

D. 2 (π + 2)


Area lying between the curve y2 = 4x and y = 2x is

A. 2/3

B. 1/3

C. 1/4

D. 3/4


Find the area bounded by curves {(x, y) : y ≥ x2 and y = |x|}.


Choose the correct answer The area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x is

A. `4/3 (4pi - sqrt3)`

B. `4/3 (4pi + sqrt3)`

C. `4/3 (8pi - sqrt3)`

D.`4/3 (4pi + sqrt3)`


The area bounded by the y-axis, y = cos x and y = sin x when  0 <= x <= `pi/2`

(A) 2 ( 2 −1)

(B) `sqrt2 -1`

(C) `sqrt2 + 1`

D. `sqrt2`


Using integration, find the area of region bounded by the triangle whose vertices are (–2, 1), (0, 4) and (2, 3).


Show that the rectangle of the maximum perimeter which can be inscribed in the circle of radius 10 cm is a square of side `10sqrt2` cm.


Find the area included between the parabolas y2 = 4ax and x2 = 4by.


The area enclosed between the curves y = loge (x + e), x = log\[\left( \frac{1}{y} \right)\] and the x-axis is _______ .


The area between x-axis and curve y = cos x when 0 ≤ x ≤ 2 π is ___________ .


Area lying between the curves y2 = 4x and y = 2x is


Solve the following :

Find the area of the region lying between the parabolas :

y2 = 4x and x2 = 4y


The area of the region included between the parabolas y2 = 16x and x2 = 16y, is given by ______ sq.units


The area enclosed between the two parabolas y2 = 20x and y = 2x is ______ sq.units


The area of triangle ΔABC whose vertices are A(1, 1), B(2, 1) and C(3, 3) is ______ sq.units


Find the area of the region lying between the parabolas 4y2 = 9x and 3x2 = 16y


Find the area of the region included between y = x2 + 5 and the line y = x + 7


Find the area enclosed between the circle x2 + y2 = 9, along X-axis and the line x = y, lying in the first quadrant


Calcualte the area under the curve y = `2sqrt(x)` included between the lines x = 0 and x = 1


Draw a rough sketch of the curve y = `sqrt(x - 1)` in the interval [1, 5]. Find the area under the curve and between the lines x = 1 and x = 5.


Area lying between the curves `y^2 = 4x` and `y = 2x`


Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve 4x3 – 3xy2 + 6x2 – 5xy – 8y2 + 9x + 14 = 0 at the point (–2, 3) be A. Then 8A is equal to ______.


Using Integration, find the area of triangle whose vertices are (– 1, 1), (0, 5) and (3, 2).


Find the area enclosed between 3y = x2, X-axis and x = 2 to x = 3.


Find the area cut off from the parabola 4y = 3x2 by the line 2y = 3x + 12.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×