Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
उत्तर
Required area= where y=sinx , 0 ≤ x ≤ `pi/2`
A = `int_0^(pi/2) sin x dx`
`= [- "cos x"]_0^(pi/2)`
`= "cos" pi/2 + "cos" 0 = 0 + 1 = 1` sq.units
APPEARS IN
संबंधित प्रश्न
Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x
Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.
Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\] and evaluate the area of the region under the curve and above the x-axis.
Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]
Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.
Find the area enclosed by the curve x = 3cost, y = 2sin t.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]
Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.
Find the area, lying above x-axis and included between the circle x2 + y2 = 8x and the parabola y2 = 4x.
Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.
Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).
Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.
Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.
If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2
The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is
Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.
Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.
The area of the region bounded by the curve y = x2 and the line y = 16 ______.
The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.
Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0
Find the area of the region included between y2 = 9x and y = x
Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.
Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π
The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:
The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0 ≤ x - (<pi)/2` is
Find the area bounded by the curve y = |x – 1| and y = 1, using integration.
Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.