मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5

उत्तर

Since, `dy/dx` represents the slope of tangent to a given curve at a point (x, y), the given equation is

`dy/dx+5 = x+y`

`therefore dy/dx-y=(x-5)`

The given equation is of the form `dy/dx+Py=Q`

where, `P=-1 " and " Q=(x-5)`

`therefore I.F. = e^(intPdx)=e^(int-1dx)=e^-x`

Solution of the given equation is

`y(I.F.) = intQ(I.F.)dx+c`

`therefore ye^-x=int(x-5)e^-xdx+c`

`=intxe^-xdx - 5int e^-xdx+c`

`=x inte^-xdx-int[d/dx(x) inte^-xdx]dx-5e^-x/-1+c`

`-xe^-x-inte^-x/-1dx+5e^-x + c`

`-xe^-x+inte^-xdx+5e^-x + c`

`-xe^-x-e^-x+5e^-x + c`

`therefore ye^-x = -xe^-x+4e^-x+c`

`therefore y=-x+4+ce^x`

`therefore x+y-4=ce^x` is the general solution

Since the curve is passing through the point (0,2)

`therefore x = 0, y = 2`

`therefore 0+2-4=ce^0`

`therefore c=-2`

`therefore x+y-4=-2e^x`

`therefore y=4-x-2e^x` is the required equation of the curve.

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (July)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).


Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
                                   OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.


Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)


The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Find the area of the region bounded by y = `sqrt(x)` and y = x.


Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.


Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


For real number a, b (a > b > 0),

let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π

Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.

Then the value of (a – b)2 is equal to ______.


Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.


Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.


Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×