मराठी

The Area of the Region Formed by X2 + Y2 − 6x − 4y + 12 ≤ 0, Y ≤ X and X ≤ 5/2 is - Mathematics

Advertisements
Advertisements

प्रश्न

The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .

पर्याय

  • \[\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}\]

  • \[\frac{\pi}{6} + \frac{\sqrt{3} + 1}{8}\]

  • \[\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}\]

  • none of these

MCQ

उत्तर

\[\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}\]
 

We have, 
\[ x^2 + y^2 - 6x - 4y + 12 \leq 0\]
\[y \leq x\]
\[x \leq \frac{5}{2}\]
Following are the corresponding equations of the given inequation . 
\[ x^2 + y^2 - 6x - 4y + 12 = 0 . . . . . \left( 1 \right)\]
\[y = x . . . . . \left( 2 \right)\]
\[x = \frac{5}{2} . . . . . \left( 3 \right)\]
Here, ABC is our required region in which point A is intersection of (1) and (3), point B is intersection of (1) and (2) and point C is intersection of (2) and (3).
By solving (1), (2) and (3) we get the coordinates of B and C as
\[B \equiv \left( 2, 2 \right)\]
\[C \equiv \left( \frac{5}{2}, \frac{5}{2} \right)\]
Now, the equation of the circle is,
\[x^2 + y^2 - 6x - 4y + 12 = 0\]
\[ \Rightarrow \left( x - 3 \right)^2 + \left( y - 2 \right)^2 = 1\]
\[ \Rightarrow \left( y - 2 \right)^2 = 1 - \left( x - 3 \right)^2 \]
\[ \Rightarrow y - 2 = \pm \sqrt{1 - \left( x - 3 \right)^2}\]
\[ \Rightarrow y = \pm \sqrt{1 - \left( x - 3 \right)^2} + 2\]
\[ \Rightarrow y = \sqrt{1 - \left( x - 3 \right)^2} + 2 or - \sqrt{1 - \left( x - 3 \right)^2} + 2\]
\[y = \sqrt{1 - \left( x - 3 \right)^2} + 2\text{ is not possible,} \]
\[\text{ Therefore, }y = - \sqrt{1 - \left( x - 3 \right)^2} + 2\]
The area of the required region ABC,
\[A = \int_2^\frac{5}{2} \left( y_2 - y_1 \right) dx ............\left( \text{Where, }y_1 = - \sqrt{1 - \left( x - 3 \right)^2} + 2\text{ and }y_2 = x \right)\]
\[ = \int_2^\frac{5}{2} \left[ x - \left( - \sqrt{1 - \left( x - 3 \right)^2} + 2 \right) \right] d x\]
\[ = \int_2^\frac{5}{2} \left[ x + \sqrt{1 - \left( x - 3 \right)^2} - 2 \right] d x\]
\[ = \left[ \frac{x^2}{2} + \frac{\left( x - 3 \right)}{2}\sqrt{1 - \left( x - 3 \right)^2} + \frac{1}{2} \sin^{- 1} \left( x - 3 \right) - 2x \right]_2^\frac{5}{2} \]
\[ = \left[ \frac{\left( \frac{5}{2} \right)^2}{2} + \frac{\frac{5}{2} - 3}{2}\sqrt{1 - \left\{ \left( \frac{5}{2} \right) - 3 \right\}^2} + \frac{1}{2} \sin^{- 1} \left( \frac{5}{2} - 3 \right) - 2\left( \frac{5}{2} \right) \right] - \left[ \frac{2^2}{2} + \frac{2 - 3}{2}\sqrt{1 - \left( 2 - 3 \right)^2} + \frac{1}{2} \sin^{- 1} \left( 2 - 3 \right) - 2\left( 2 \right) \right]\]
\[ = \left[ \frac{25}{8} - \frac{1}{4}\sqrt{1 - \frac{1}{4}} + \frac{1}{2} \sin^{- 1} \left( - \frac{1}{2} \right) - 5 \right] - \left[ 2 - \frac{1}{2} \times 0 + \frac{1}{2} \sin^{- 1} \left( - 1 \right) - 4 \right]\]
\[ = \left[ - \frac{15}{8} - \frac{\sqrt{3}}{8} + \frac{1}{2} \times \left( - \frac{\pi}{6} \right) \right] - \left[ + \frac{1}{2} \times \left( - \frac{\pi}{2} \right) - 2 \right]\]
\[ = - \frac{15}{8} - \frac{\sqrt{3}}{8} - \frac{\pi}{12} + \frac{\pi}{4} + 2\]
\[ = \frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - MCQ [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
MCQ | Q 7 | पृष्ठ ६२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.


Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.


Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0


Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.


Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.


Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.


Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×