हिंदी

The Area of the Region Formed by X2 + Y2 − 6x − 4y + 12 ≤ 0, Y ≤ X and X ≤ 5/2 is - Mathematics

Advertisements
Advertisements

प्रश्न

The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .

विकल्प

  • \[\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}\]

  • \[\frac{\pi}{6} + \frac{\sqrt{3} + 1}{8}\]

  • \[\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}\]

  • none of these

MCQ

उत्तर

\[\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}\]
 

We have, 
\[ x^2 + y^2 - 6x - 4y + 12 \leq 0\]
\[y \leq x\]
\[x \leq \frac{5}{2}\]
Following are the corresponding equations of the given inequation . 
\[ x^2 + y^2 - 6x - 4y + 12 = 0 . . . . . \left( 1 \right)\]
\[y = x . . . . . \left( 2 \right)\]
\[x = \frac{5}{2} . . . . . \left( 3 \right)\]
Here, ABC is our required region in which point A is intersection of (1) and (3), point B is intersection of (1) and (2) and point C is intersection of (2) and (3).
By solving (1), (2) and (3) we get the coordinates of B and C as
\[B \equiv \left( 2, 2 \right)\]
\[C \equiv \left( \frac{5}{2}, \frac{5}{2} \right)\]
Now, the equation of the circle is,
\[x^2 + y^2 - 6x - 4y + 12 = 0\]
\[ \Rightarrow \left( x - 3 \right)^2 + \left( y - 2 \right)^2 = 1\]
\[ \Rightarrow \left( y - 2 \right)^2 = 1 - \left( x - 3 \right)^2 \]
\[ \Rightarrow y - 2 = \pm \sqrt{1 - \left( x - 3 \right)^2}\]
\[ \Rightarrow y = \pm \sqrt{1 - \left( x - 3 \right)^2} + 2\]
\[ \Rightarrow y = \sqrt{1 - \left( x - 3 \right)^2} + 2 or - \sqrt{1 - \left( x - 3 \right)^2} + 2\]
\[y = \sqrt{1 - \left( x - 3 \right)^2} + 2\text{ is not possible,} \]
\[\text{ Therefore, }y = - \sqrt{1 - \left( x - 3 \right)^2} + 2\]
The area of the required region ABC,
\[A = \int_2^\frac{5}{2} \left( y_2 - y_1 \right) dx ............\left( \text{Where, }y_1 = - \sqrt{1 - \left( x - 3 \right)^2} + 2\text{ and }y_2 = x \right)\]
\[ = \int_2^\frac{5}{2} \left[ x - \left( - \sqrt{1 - \left( x - 3 \right)^2} + 2 \right) \right] d x\]
\[ = \int_2^\frac{5}{2} \left[ x + \sqrt{1 - \left( x - 3 \right)^2} - 2 \right] d x\]
\[ = \left[ \frac{x^2}{2} + \frac{\left( x - 3 \right)}{2}\sqrt{1 - \left( x - 3 \right)^2} + \frac{1}{2} \sin^{- 1} \left( x - 3 \right) - 2x \right]_2^\frac{5}{2} \]
\[ = \left[ \frac{\left( \frac{5}{2} \right)^2}{2} + \frac{\frac{5}{2} - 3}{2}\sqrt{1 - \left\{ \left( \frac{5}{2} \right) - 3 \right\}^2} + \frac{1}{2} \sin^{- 1} \left( \frac{5}{2} - 3 \right) - 2\left( \frac{5}{2} \right) \right] - \left[ \frac{2^2}{2} + \frac{2 - 3}{2}\sqrt{1 - \left( 2 - 3 \right)^2} + \frac{1}{2} \sin^{- 1} \left( 2 - 3 \right) - 2\left( 2 \right) \right]\]
\[ = \left[ \frac{25}{8} - \frac{1}{4}\sqrt{1 - \frac{1}{4}} + \frac{1}{2} \sin^{- 1} \left( - \frac{1}{2} \right) - 5 \right] - \left[ 2 - \frac{1}{2} \times 0 + \frac{1}{2} \sin^{- 1} \left( - 1 \right) - 4 \right]\]
\[ = \left[ - \frac{15}{8} - \frac{\sqrt{3}}{8} + \frac{1}{2} \times \left( - \frac{\pi}{6} \right) \right] - \left[ + \frac{1}{2} \times \left( - \frac{\pi}{2} \right) - 2 \right]\]
\[ = - \frac{15}{8} - \frac{\sqrt{3}}{8} - \frac{\pi}{12} + \frac{\pi}{4} + 2\]
\[ = \frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - MCQ [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
MCQ | Q 7 | पृष्ठ ६२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x


Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.

 

Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.


The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.


The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


For real number a, b (a > b > 0),

let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π

Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.

Then the value of (a – b)2 is equal to ______.


The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.


The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Evaluate:

`int_0^1x^2dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×