हिंदी

If the Area Enclosed by the Parabolas Y2 = 16ax and X2 = 16ay, a > 0 is 1024 3 Square Units, Find the Value of A. - Mathematics

Advertisements
Advertisements

प्रश्न

If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.

योग

उत्तर

The parabola y2 = 16ax opens towards the positive x-axis and its focus is (4a, 0).
The parabola x2 = 16ay opens towards the positive y-axis and its focus is (0, 4a).
Solving y2 = 16ax and x2 = 16ay, we get
\[\left( \frac{x^2}{16a} \right)^2 = 16ax\]
\[ \Rightarrow x^4 = \left( 16a \right)^3 x\]
\[ \Rightarrow x^4 - \left( 16a \right)^3 x = 0\]
\[ \Rightarrow x\left[ x^3 - \left( 16a \right)^3 \right] = 0\]
\[ \Rightarrow x = 0\text{ or }x = 16a\]
So, the points of intersection of the given parabolas are O(0, 0) and A(16a, 16a).

Area enclosed by the given parabolas
= Area of the shaded region
\[= \int_0^{16a} \sqrt{16ax}dx - \int_0^{16a} \frac{x^2}{16a}dx\]
\[ = \left.4\sqrt{a} \times \frac{x^\frac{3}{2}}{\frac{3}{2}}\right|_0^{16a} - \left.\frac{1}{16a} \times \frac{x^3}{3}\right|_0^{16a} \]
\[ = \frac{8\sqrt{a}}{3}\left[ \left( 16a \right)^\frac{3}{2} - 0 \right] - \frac{1}{48a}\left[ \left( 16a \right)^3 - 0 \right]\]
\[ = \frac{8\sqrt{a}}{3} \times 64a\sqrt{a} - \frac{256 a^2}{3}\]
\[ = \frac{512 a^2}{3} - \frac{256 a^2}{3}\]
\[ = \frac{256 a^2}{3}\text{ square units }\]
But,
Area enclosed by the given parabolas = \[\frac{1024}{3}\] square units           ..........(Given)
\[\therefore \frac{256 a^2}{3} = \frac{1024}{3}\]
\[ \Rightarrow a^2 = \frac{1024}{256} = 4\]
\[ \Rightarrow a = 2 ............\left( a > 0 \right)\]

Thus, the value of a is 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
Exercise 21.3 | Q 52 | पृष्ठ ५३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.


Find the area of the region included between the parabola y2 = x and the line x + y = 2.


Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is


Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.


Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.


Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×