हिंदी

The Area of the Region Bounded by the Parabola (Y − 2)2 = X − 1, the Tangent to It at the Point with the Ordinate 3 and the X-axis is - Mathematics

Advertisements
Advertisements

प्रश्न

The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .

विकल्प

  • 3

  • 6

  • 7

  • none of these

MCQ

उत्तर

none of these

 


The tangent passes through the point with ordinate 3, so substituting y = 3 in equation of parabola (y − 2)2 = x − 1, we get x = 2
Therefore, the line touches the parabola at (2, 3).
We have,
\[\left( y - 2 \right)^2 = x - 1\]
\[ \Rightarrow y - 2 = \sqrt{x - 1}\]
\[ \Rightarrow y = \sqrt{x - 1} + 2\]
Slope of the tangent of parabola at x = 2

\[\left[ \frac{d y}{d x} \right]_{x = 2} = \left[ \frac{1}{2\sqrt{x - 1}} \right]_{x = 2} = \frac{1}{2}\]
Therefore, the equation of the tangent is given as: 
\[y - y_0 = m\left( x - x_0 \right)\]
\[ \Rightarrow y - 3 = \frac{1}{2}\left( x - 2 \right)\]
\[ \Rightarrow y = \frac{1}{2}x + 2\]
Therefore, area of the required region ABC,
\[A = \int_0^3 \left( x_1 - x_2 \right) dy ...........\left[\text{Where, }x_1 = \left( y - 2 \right)^2 + 1\text{ and }x_2 = 2\left( y - 2 \right) \right]\]
\[ = \int_0^3 \left( x_1 - x_2 \right) d y\]
\[ = \int_0^3 \left( y - 2 \right)^2 + 1 - 2\left( y - 2 \right) d y\]
\[ = \int_0^3 \left[ \left( y - 2 \right) - 1 \right]^2 d y\]
\[ = \int_0^3 \left[ y - 3 \right]^2 d y\]
\[ = \left[ \frac{\left( y - 3 \right)^3}{3} \right]_0^3 \]
\[ = \left[ \frac{\left( 3 - 3 \right)^3}{3} \right] - \left[ \frac{\left( 0 - 3 \right)^3}{3} \right]\]
\[ = 9\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - MCQ [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
MCQ | Q 9 | पृष्ठ ६२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Determine the area under the curve y = \[\sqrt{a^2 - x^2}\]  included between the lines x = 0 and x = a.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.


Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.


Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.


Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.


Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.


The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .


The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .


The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =


Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1


Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Evaluate:

`int_0^1x^2dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×