हिंदी

Determine the Area Under the Curve Y = √ a 2 − X 2 Included Between the Lines X = 0 and X = A. - Mathematics

Advertisements
Advertisements

प्रश्न

Determine the area under the curve y = \[\sqrt{a^2 - x^2}\]  included between the lines x = 0 and x = a.

उत्तर

We have, 
\[y = \sqrt{a^2 - x^2}\]
\[ \Rightarrow y^2 = a^2 - x^2 \]
\[ \Rightarrow x^2 + y^2 = a^2 \]
\[\text{ Since in the given equation }x^2 + y^2 = a^2 , \text{ all the powers of both } x\text{ and }y\text{ are even, the curve is symmetrical about both the axis }. \]
\[ \therefore\text{ Required area = area enclosed by circle in first quadrant }\]
\[(a, 0 ), ( - a, 0)\text{ are the points of intersection of curve and }x -\text{ axis }\]
\[(0, a), (0, - a)\text{ are the points of intersection of curve and }y -\text{ axis }\]
\[\text{ Slicing the area in the first quadrant into vertical stripes of height }= \left| y \right|\text{ and width }= dx\]
\[ \therefore\text{ Area of approximating rectangle }= \left| y \right| dx\]
\[\text{ Approximating rectangle can move between }x = 0\text{ and }x = a\]
\[A =\text{ Area of enclosed curve in first quadrant }= \int_0^a \left| y \right| dx\]
\[ \Rightarrow A = \int_0^a \sqrt{a^2 - x^2} d x\]
\[ = \left[ \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} \right]_0^a \]
\[ = \frac{1}{2} a^2 \sin^{- 1} 1\]
\[ = \frac{1}{2} a^2 \frac{\pi}{2} \]
\[ = \frac{a^2 \pi}{4}\text{ sq units }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - Exercise 21.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
Exercise 21.1 | Q 13 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.


Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]


Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 


Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.


Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.


Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.


The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


The area bounded by the curve y = 4x − x2 and the x-axis is __________ .


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


Find the area bounded by the curve y = sinx between x = 0 and x = 2π.


The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.


The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is 


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.


Evaluate:

`int_0^1x^2dx`


Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×