हिंदी

Find the Area Bounded by the Lines Y = 4x + 5, Y = 5 − X and 4y = X + 5. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.

उत्तर

We have, 
\[y = 4x + 5 . . . . . \left( 1 \right)\]
\[y = 5 - x . . . . . \left( 2 \right)\]
\[4y = x + 5 . . . . . \left( 3 \right)\]
All the three equations represent equations of straight lines
The points of intersection is obtained by solving  simultaneous equations
\[\text{ From }\left( 1 \right)\text{ and }\left( 2 \right)\]
\[4x + 5 = 5 - x\]
\[ \Rightarrow 5x = 0\]
\[ \Rightarrow x = 0\]
\[ \Rightarrow y = 5 \]
\[\text{ Thus }A\left( 0, 5 \right)\text{ is the point of intersection of }\left( 1 \right)\text{ and }\left( 2 \right)\]
\[\text{ From }\left( 2 \right)\text{ and }\left( 3 \right)\]
\[4\left( 5 - x \right) = x + 5\]
\[ \Rightarrow 5x = 15\]
\[ \Rightarrow x = 3\]
\[ \Rightarrow y = 2\]
\[\text{ Thus }B\left( 3, 2 \right) \text{ is the point of intersection of } \left( 2 \right)\text{ and }\left( 3 \right)\]
\[\text{ From }\left( 1 \right)\text{ and }\left( 3 \right)\]
\[4\left( 4x + 5 \right) = x + 5\]
\[ \Rightarrow 15x = - 15\]
\[ \Rightarrow x = - 1\]
\[ \Rightarrow y = 1\]
\[\text{ Thus }C\left( - 1, 1 \right)\text{ is the point of intersection of }\left( 1 \right)\text{ and }\left( 3 \right)\]
\[\text{ Area }\left( ABC \right) = \text{ area }\left( ABP \right) + \text{ area }\left( PAB \right)\]
\[ = \int_{- 1}^0 \left[ \left( 4x + 5 \right) - \left( \frac{x + 5}{4} \right) \right] dx + \int_0^3 \left[ \left( 5 - x \right) - \left( \frac{x + 5}{4} \right) \right] dx\]
\[ = \int_{- 1}^0 \left( \frac{15}{4}x + \frac{15}{4} \right) dx + \int_0^3 \left( \frac{15}{4} - \frac{5}{4}x \right) dx\]
\[ = \frac{15}{4} \left[ \frac{x^2}{2} + x \right]_{- 1}^0 + \frac{5}{4} \left[ 3x - \frac{x^2}{2} \right]_0^3 \]
\[ = \frac{15}{4}\left( - \frac{1}{2} + 1 \right) + \frac{5}{4}\left( 9 - \frac{9}{2} \right)\]
\[ = \frac{15}{8} + \left( \frac{5}{4} \times \frac{9}{2} \right)\]
\[ = \frac{15}{8} + \frac{45}{8} \]
\[ = \frac{60}{8}\]
\[ = \frac{15}{2}\text{ sq . units }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
Exercise 21.3 | Q 41 | पृष्ठ ५२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).


The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]


Find the area of ellipse `x^2/1 + y^2/4 = 1`

 


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.


Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0


Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.


The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.


The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×