Advertisements
Advertisements
प्रश्न
Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\] and evaluate the area of the region under the curve and above the x-axis.
उत्तर
\[\text{ Since in the given equation }\frac{x^2}{4} + \frac{y^2}{9} = 1,\text{ all the powers of both }x\text{ and }y \text{ are even, the curve is symmetrical about both the axis }. \]
\[ \therefore\text{ Area encloed by the curve and above }x \text{ axis = area }A' BA = 2 \times \text{ area enclosed by ellipse and } x -\text{ axis in first quadrant }\]
\[(2, 0 ), ( - 2, 0) \text{ are the points of intersection of curve and }x - \text{ axis }\]
\[(0, 3), (0, - 3) \text{ are the points of intersection of curve and } y -\text{ axis }\]
\[\text{ Slicing the area in the first quadrant into vertical stripes of height }= \left| y \right| \text{ and width }= dx\]
\[ \therefore\text{ Area of approximating rectangle }= \left| y \right| dx\]
\[\text{ Approximating rectangle can move between }x = 0\text{ and }x = 2 \]
\[A =\text{ Area of enclosed curve above }x - \text{ axis }= 2 \int_0^2 \left| y \right| dx\]
\[ \Rightarrow A = 2 \int_0^2 y dx\]
\[ \Rightarrow A = 2 \int_0^2 \frac{3}{2}\sqrt{4 - x^2}dx\]
\[ \Rightarrow A = 3 \int_0^2 \sqrt{4 - x^2}dx\]
\[ \Rightarrow A = 3 \left[ \frac{1}{2}x \sqrt{4 - x^2} + \frac{1}{2} 4 \sin^{- 1} x \right]_0^2 \]
\[ = 3\left[ 0 + \frac{1}{2} \times 4 \sin^{- 1} 1 \right] = 3 \times \frac{1}{2} \times 4 \times \frac{\pi}{2} = 3\pi \text{ sq . units }\]
\[ \therefore\text{ Area of enclosed region above }x -\text{ axis }= 3\pi\text{ sq . units }\]
APPEARS IN
संबंधित प्रश्न
Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.
Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.
Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.
Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.
Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.
Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.
Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)
Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.
Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity.
Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them.
Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.
Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py
Find the area of the region included between y2 = 9x and y = x
Find the area of region bounded by the line x = 2 and the parabola y2 = 8x
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.
Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π
The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.
Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.
The area of the region bounded by the line y = 4 and the curve y = x2 is ______.
Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.
Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:
Find the area bounded by the curve y = |x – 1| and y = 1, using integration.
Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.
The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.
Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.