हिंदी

Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration. - Mathematics

Advertisements
Advertisements

प्रश्न

Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.

योग

उत्तर

2x + y = 8, y = 2, y = 4


Required Area = Area of ABDE + Area of BCD

= `int_0^2 (4 - 2)dx + int_2^3 {(8 - 2x) - 2}dx`

= `[2x]_0^2 + [6x - x^2]_2^3`

= 4 + [18 – 9 – 12 + 4]

= 4 + 1

= 5 sq. units.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x


Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.


Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


The area bounded by y = 2 − x2 and x + y = 0 is _________ .


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.


Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.


Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Find the area of the region bounded by y = `sqrt(x)` and y = x.


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×